本书主要内容为Lebesgue测度与积分理论,共分6章,具体包括集合与点集,Lebesgue测度,可测函数,Lebesgue积分,微分与不定积分,L空间等。丰富的案例,为读者展示出广阔的应用空间,精选的思考题和习题拓宽和加深了正文所述的内容,书后附有部分解答供参考。
本书是大学生学习“数学分析”课的辅导教材,分为上、下两册,共七章。上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析。在每一节中,设有内容提要、典型例题分析,通过精选的典型例题进行分析、讲解与评注,析疑解惑。
本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供所需要的泛函的数学基础知识。第2章量子化学基础,补充在一般物理化学以上的量子化学基础知识。第3章量子力学的密度泛函理论,从霍亨堡和库恩的两个定理出发,着重讨论库恩-沈方法,并介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,接着进入
高等数学课程是许昌学院首批校级精品课程,自2008年立项建设到2010年结项,并在结项鉴定中被命名为校级优秀精品课程.在教学中确立以人为本、以教师为主导、学生为主体的教育理念;改革传统的课堂教学方式和方法,采用引导发现式和探究式教学法进行课堂教学;加强学生的逻辑思维能力的训练,在教学的过程中,用多媒体辅助课堂教学提高课
本书是作者近年来科研工作的整理和总结,基于Hibert空间和Banach空间的集合理论和非线性算子理论,对满足不同条件的非线性迭代算子进行研究,得到了一些有效算法和收敛定理,并在此基础上将非线性算子理论应用到分数阶微分方程以及分数阶发展方程。内容包括:首先介绍了非线性算子理论及迭代算法的背景、简史以及迭代算法的发展情况
本书分为数理逻辑、集合论、代数结构和图论4个部分。全书内容严谨,条理清晰,对概念的阐述精确,对实例的使用合理,适合作为高等学校软件工程专业和计算机专业离散数学课程的本科生教材,也可作为软件工程与计算机等相关专业的自学参考书。
数学是研究空间形式和数量关系的科学。数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。随着社会的发展,数学的应用越来越广泛。它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成
本书主要是对高等代数的内容和方法进行梳理、归纳和补充,并紧扣“选讲”课程的根本任务。内容包括两部分:线性代数初步、多项式代数。主要为数与多项式,行列式,线性方程组,矩阵,线性空间,二次型,线性变换,空间分解,矩阵相似等。
本书作为中国大学先修课程的教材,旨在使学生通过学习,理解微积分学中的基本概念、掌握微积分中的基本理论和基本方法、会处理微积分中的常见问题,使学生得到比较系统的数学训练。全书共有10章内容,依次是:第1章函数与方程、第2章极限、第3章连续函数、第4章导数与微分、第5章微分中值定理和导数的应用、第6章定积分、第7章积分法与