黎曼曲面及其模空间的概念由黎曼分别在其博士毕业论文和一篇著名的文章中定义。由于同数学与物理的许多学科联系广泛,黎曼曲面及其模空间得到了深入的研究,并将继续吸引人们的关注。近期热带曲线的研究迅速崛起。热带代数曲线是经典复数域上代数曲线以及黎曼曲面在热带半环上的一种模拟。
《实定理的复证明》是对Hadamard的格言“实域中两个真理之间的最好和最短路程是通过复域”的延伸思考。面向熟悉研究生一年级水平分析学的受众,此书的目的在于解释复变量是如何对分析的一些领域中的许多类重要结果提供了快速而高效的证明,这些领域包括诸如近似理论、算子理论、调和分析和复动力系统。
不断有许多只言片语的数学传闻从导师传到学生或者从同事传到同事,但这些常常是模糊的,而在正式文献中去进行讨论又显得不甚严肃。通常对知道这种“数学传说”的人来说也只是个碰巧的机会而已。但是到了今天,这样一些只言片语也可通过研究博客这种半正式的媒体进行有效和高效率的传播。这本书便是由博客产生的。
LarsAhlfors的这本关于拟共形映射的讲义是基于1964年春季学期在哈佛大学的一门课程形成的,1966年第一次出版,不久便被公认为注定会成为经典的著作。这些讲义从一开始就讲述了拟共形理论,给出了一个对Beltrami方程自足式的处理,并讲述了Teichmüller空间的基本性质,包括Bers嵌入和Teichmül
本书从数学的角度初步介绍了定性微分方程和离散动力系统,包括了理论性证明、计算方法和应用。全书分两部分,即微分方程的连续时间和动力系统的离散时间,可分别用于一学期的课程,或两者结合为一年期的课程。
作者本着《一千零一夜》的精神提供了1001个数论问题,以吸引读者立即去解决一个接一个的问题。不管是新手还是有经验的数学家,凡是对数着迷的人都会找到一大类的、有些简单有些更复杂的问题,它们将给予他们以美妙的数学体验。
本书提供给读者一个对复分析的深刻理解以及这门学科是如何融入数学的。该书是从伊利诺伊大学香槟分校的校园荣誉计划中的讲座发展起来的。这些课程的目标是让学生体会到当以复分析的观点对待许多数学和物理问题时,问题便被神奇地简化了。此书从初等的水平出发,但也包含了高级的材料。
本书的第一部分介绍了代数群概形的表示论。在这里,作者描述了重要的基本概念:诱导函子,上同调,商,Frobenius核,modp约化,等等。第二部分致力于约化代数群的表示论并包括了对诸如单模、消灭定理、Borel–Bott–Weil定理和Weyl特征标公式以及Schubert概形和它上面的线丛等的描述。这是对这本现代经典
1940-1941年,vonNeumann在普林斯顿高等研究院给出了关于不变测度的讲座。 《美国数学会经典影印系列:不变测度(影印版)》基本上是按这些讲座写成的。 讲座一开始讲了一般测度论,然后进到Haar测度和它的一些推广。当时ShizuoKakutani(角谷静夫)正在这个研究院,他与yonNeumaml关于这