本书的第一部分专门介绍了黎曼流形之间调和映射理论的各个方面。第二部分提出了一些尚未解决的问题,并给出一些评注和参考文献,这些评注和参考文献的难度差别很大。本书首次在定性层面阐述了调和映射。Thefirstpartofthebookisdevotedtoanaccountofvariousaspectsofthetheo
每年在Lehigh大学,都会有一位著名的数学家作数学的Pitcher讲座。本书主要内容是基于FritzJohn在1989年4月给出的Pitcher讲座。本书探讨了非线性双曲偏微分方程初值问题解的大范围存在性问题。典型的非线性问题在广泛的课题中虽有许多结果却少有一般性的结论,因而作者将自己严格限制在此领域的一小块中,在其
本书的主要目的是全面阐述作者关于发散形式的二阶椭圆拟线性方程弱解的边界正则性的相关工作成果。这些方程的结构容许系数在特定的Lp空间中,因此从经典结果可知,弱解在内部是局部H?lder连续的。这里表明了,弱解在边界处是连续的当且仅当Wiener型条件得到满足。在调和函数的情形下,这个条件约化为著名的Wiener准则。这个
解析数论的一大特点是能够利用多种工具获得所需的结果。这个理论的一个主要迷人之处是它的概念和方法的极大多样化。本书的主要目的是呈现这个理论在经典和现代两个方向上的适用范围,并展示其丰富内涵和前景、漂亮的定理以及强有力的技术。为了让研究生更好地阅读,作者很好地兼顾了叙述的清晰性、内容的完整性及知识的广度。每一节的习题都含有
本书是作者在清华大学讲授的研究生课程“代数几何I”的讲义。每次伴随着课程的讲授,作者都要修订讲义。经过四五次的锤炼之后,作者终于决定出版此书。交换代数和代数几何是密不可分的,因此阅读本书需要一些交换代数的预备知识。通过学习代数几何不仅仅学习了交换代数,还学习了从几何角度思考交换代数。
本书描述了平面曲线拓扑研究中的最新进展。平面曲线理论比纽结理论更为丰富,后者可以视为平面曲线理论的交换形式。这个研究建立在奇点理论的基础上:无穷维的曲线空间通过判别超曲面而细分为由同型的泛曲线组成的各个部分。区分这些型的不变量则由在这些超曲面的交叉处的跃变定义。Arnold描绘了对于焦散曲线几何,以及辛几何和切触几何中
Gromov于1985年首次引进了J-全纯曲线,这对辛几何的研究是革命性的。通过量子上同调,数学物理中许多令人兴奋的新思想都与这些曲线有着某种关联。本书对J-全纯曲线理论进行了条理分明且全面充分的阐述,这个理论的各个细节目前分散在各类研究文章中。此书的前半部是关于该领域的一个说明性的陈述,解释了主要的技术方面。McDu
多项式方程组的求解是数学中的经典问题。今天,多项式模型无处不在,并在科学中广泛使用,如机器人技术、编码理论、优化、数学生物学、计算机视觉、博弈论、统计学及许多其他领域。本书提供了跨越数学学科的桥梁,揭示了多项式方程组的许多方面。它涵盖了广泛的数学技巧和算法,包括符号计算和数值计算。多项式方程组的解集是代数变量——代数几
这是第一本系统阐述量子上同调各种相关论题的专著。该学科最初起源于理论物理学(量子弦理论),并在过去十年中继续广泛发展。特别地,本书为研究镜像猜想提供了不可或缺的数学背景,镜像猜想是物理学家最近发现的量子弦理论的对偶性之一。作者对量子上同调的研究基于Frobenius流形的概念。本书的第一部分将全面阐述这一概念及其与操作
本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”和教育部“理科基础人才培养基地创建优秀名牌课程数学分析”项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理