书以测度论为基础,在严谨的数学理论基础上,建立了一个由离散型随机变量和一个多维连续型随机变量构成的一种新型的理论分布模型——多维复合极值分布模型。模型中的离散型随机变量,可以是不同海区每年台风、飓风、寒潮大风出现的各不相同的频次,也可以是由于海洋环境条件的随机性而构成的各年(或过阈)不同的最大荷载取样个数,而模型中的多
本书系统地介绍了离散数学的理论与方法。全书共9章,内容包括命题逻辑、谓词逻辑、集合、二元关系和函数、代数系统、图论导论、特殊的图、树及其应用以及组合数学基础。为了帮助学生对庞杂的知识点进行理解记忆,本书在讲解知识点时配有丰富的、面向计算机科学技术发展的应用实例;同时,每一章都有典型例题解析,详细分析了该例题中所用
本书根据IEEECS/ACMComputingCurricula2013的要求,系统地阐述离散数学的经典内容.全书共9章,内容包括:集合、映射与运算,关系,命题逻辑,谓词逻辑,初等数论,图论,几类特殊的图,组合计数,代数结构.各章的每一节都提供了精选的习题,书后提供了部分习题的答案及提示.本书以集合、映射、运算和关系
图像信号本质上可以看作是关于一组基向量的稀疏表示,而稀疏表示是获得、表示和压缩图像信号的一种强有力的工具。从稀疏约束的角度来划分,可以将稀疏表示分为五类,分别为(1)基于最小化L0范数的稀疏表示,(2)基于最小化Lp(0<p<1)范数的稀疏表示,(3)基于最小化L1范数的稀疏表示,(4)基于最小化L2,1范数的稀疏表示
本书主要内容包括行列式,矩阵及其运算,矩阵的初等变换和线性方程组,向量空间、欧氏空间、线性空间与线性变换,方阵的相似变换、特征值与特征向量,二次型与其标准形,各章均配有一定量的习题,书末附有习题答案。
本书共分三卷,本卷为第二卷.第一卷的内容主要有:实数基本理论;一元微积分学,包括极限、连续、级数、微分、复数、积分等.在此基础上,本卷主要介绍拓扑空间(特别是度量空间、欧氏空间)及映射的极限与连续的映射(包括压缩映像原理);多变量函数微分学;重积分;流形及微分形式;流形(特别是曲线与曲面)上微分形式的积分;向量分析与场
为南开大学代数类课程教材系列的重要一环,本教材具有整套系列教材的共同特色。由于我们一直将代数学看成一个整体看待,因此我们的教材特别注重与前期课程与后继课程的衔接与统一。本教材特别注重讲清楚数学思想,因此在引出定义和定理前一般会加入很多解释性的按语,或者在定理后面加一些注记。本教材的习题是我们花了大量心血精心设计而成的,
如何描述一群人和另外一群人的距离呢?知音与朋友的数学差异是什么?足球比赛的冷门不断会刻意突出其怎样的运动本质?基于大数据的客观世界真的会与数学形成对立吗?我们经常说的"度"的数学内涵是什么?为什么会产生约等式逻辑?你能证明人单腿站立不稳当吗?多米诺效应隐藏着人们什么样的虚假比喻?围棋完美化的数学途径是什么?为什么大众更
这本教材覆盖了许多不同的数学领域。这本书包括以下内容:平面几何与立体几何的基本知识;极限展开以及它在几何中的应用;有限样本空间中的概率的基本知识;以及对集合论和逻辑的初步介绍。尽管这些内容是相对独立的,本书可以帮助读者看到并理解不同数学领域之间的联系。每章的开头部分,有关于学习本章所需的预备知识的描述。
环论是抽象代数学中的一个重要的分支。环的结构、分类与表示是环论中的具有根本性的研究课题。在环论的发展过程中,人们先后提出了很多种环的概念。作为抽象的代数概念,各种环类都需要具体的例子来支撑相关的理论。本书以环论中一些重要的环与模为研究对象,比较系统地介绍它们的定义、性质以及丰富的具有代表性的例子,特别是通过具体的例子展