本书主要介绍了素数定理的七个初等证明以及与之有关的Chebyshev不等式、Mertens定理、素数定理的等价命题、RiemannZeta函数、几个Tauber型定理、L空间中的Fourier变换、Wiener定理、素数定理的推广等。通过学习本书,对大学数学系学生,特别是高年级学生深入理解大学数学基础课程的内容、应用及
本书共二十五章及一个附录:从集合论、群论以及数系讲起一直深入到群表示论、张量分析、拓扑空间、同伦群、流形、李群和李代数、纤维丛、同调论、上同调论、流形上的联络以及黎曼流形等一系列重大的数学物理课题。本书附录以杨氏图为线索论述了在核谱学、基本粒子等物理学科中有应用的对称群和线性群的表示论。本书可作为数学物理方法的补充教材
本书共分7编,详细讲述了狄多等周问题从提出到深入研究的整个过程,介绍了狄多等周问题的历史,等周问题中的矩阵方法,等周不等式,等周亏格上界估计,几何不等式与积分几何,盖尔方德积分几何等内容。本书可供从事这一数学问题研究或相关学科的数学工作者、大学生及数学爱好者参考阅读。
本书从一道IMO试题的证法谈起,详细介绍了有关Erdos-Mordell不等式的相关内容,给出了多种证明方法,并以此为基础对Erdos-Mordell不等式进行了加强与推广,对高维空间与球面上的Erdos-Mordell不等式也给出了结论与猜想,最后还介绍了国外研究此不等式的成果。本书适合数学专业的大学师生及数学爱好者
本书共有十七编,包括有关MersenNe素数的若干新闻报道,Dickson论素数,与Mersenne素数相关的数,Mersenfle数与孤立数,Mersenne数的素因数,Mersenne数与数论变换等内容。本书适合大学师生及数学爱好者参考使用。
本书分为上下册,共十章,上册六章,下册四章。前四章是实变函数逼近论的经典问题的基础知识,其中特别注意用近代泛函分析的观点和方法统贯材料。后六章是本书的重点所在,系统地介绍了逼近论在现代发展中出现的两个新方向——宽度论和**恢复论。本书可供高等学校基础数学、计算数学专业的高年级大学生以及函数论方向的研究生作教材或参考书,
本书分为上下册,共十章,上册六章,下册四章。前四章是实变函数逼近论的经典问题的基础知识,其中特别注意用近代泛函分析的观点和方法统贯材料。后六章是本书的重点所在,系统地介绍了逼近论在现代发展中出现的两个新方向一一宽度论和**恢复论。本书可供高等学校基础数学、计算数学专业的高年级大学生以及函数论方向的研究生作教材或参考书,
模形式理论是数论的一个重要分支。本书介绍作者在半整权模形式理论上的研究成果:证明权为3/2的任一模形式可表为一个尖形式和一个Eisenstein级数之和,并构造了由Eisenstein级数生成的子空间的基底;介绍了这个结果在三元二次型簇表整数问题中的应用;将研究权为3/2的Eisenstein级数的方法推广应用于研究一
摆线是高等数学里一种重要的曲线,它与椭圆、抛物线、弹道线等有同等价值。同时,它对于机械制造又有非常重要的意义,好多种机器零件的边缘都是这种曲线。作者在本书里通过平凡的事例,非常简单生动地讲述了它的基本性质,这些知识不仅对打算继续学习高等数学的学生有用,而且对一般技术人员也是非常有用的。但是,应该指出,这本书毕竟是一本数
本书精心命制和整合了大约1000道考研数学复习的题目,其主要来源是:(1)与考研数学命题密切相关的重要资料.这里包括考研数学命题前的全国征题、部分考研命题的备考题、命题人退下来以后命制的题目、某些全国大学数学教学基地的考试题库等,这些题一般会综合了多个知识点,有一定的难度和区分度.(2)前苏联、全国、各省市大学生数学竞