本书内容包括行列式、矩阵、线性方程组、矩阵的特征值和特征向量、二次型、矩阵在数学模型中的应用,共6章。
本教材按照数学知识在解决工程实际问题中的作用分为四章,分别是函数与建模、变化率与曲率、物理量微元变化累积的计算、常微分方程。本教材借鉴数学建模在提高学生数学实践能力和综合素质方面的成功经验,将数学基本知识、数学建模、数学实验及专业课程有机融合。
本书是《工科数学分析(第二版)》的配套辅助教材,可作为高等学校“工科数学分析”与“高等数学”课程的教学参考书。该书具有以下特色。(1)全书分为四册,其中第一册和第二册是《工科数学分析(第二版)》(上册)的配套教辅,第三册和第四册是《工科数学分析(第二版)》(下册)的配套教辅。(2)第一册和第二册的主要内容有函数、极限、
《线性椭圆型方程组论二阶椭圆型方程的迪利克雷问题(俄文)》是一部关于偏微分方程的俄文版专著,中文书名可译为《线性椭圆型方程组:论二阶椭圆型方程的迪利克雷问题》,作者是瓦格拉姆·杜马尼扬,亚美尼亚人,曾获物理和数学科学博士学位,现为埃里温国立大学信息学和应用数学系副教授,主要研究方向为应用数学等。
该书是一部版权引进自俄罗斯的俄文原版大学数学教材,中文可译为《复分析:积分定理》。该书作者为伊戈里·亚历山德罗维奇·亚历山德洛夫,俄罗斯人,物理和数学科学博士,任职于托木斯克国立大学,俄罗斯教育科学院通讯院士,教授,数学分析教研室主任。该书给出了作为由实数对组成的域元素的复数理论的现代构造,
本书是一部俄文原版的数学专著,由数学工作室购买了影印版权,中文的书名可译为《微积分代数样条和多项式及其在数值方法中的应用》。本书的作者有两位,一位是弗拉基米尔.伊万诺维奇.基列耶夫,俄罗斯人,物理和数学科学博士,俄罗斯国家研究型技术大学教授,研究方向包括气动力学复合边界问题、数学物理数值方法。另一位是位女数学家,名为塔
本书阐述了交替方向乘子法复数域理论分析和交替方向乘子法的应用,并基于Wirtinger微积分理论,介绍了复数域上可分凸优化问题的交替方向乘子法的最新研究成果.本书主要内容包括∶复数域上线性约束凸优化问题的交替方向乘子法的实现及收敛性证明,复交替方向乘子法的0(1/K)的线性收敛速度证明,一类标准的不可分凸优化问题的交替
本书从学生熟悉的中学代数课程内容出发,依此建立矩阵的初等理论,使学生受到线性代数基本计算的训练,如求解线性方程组、求逆矩阵、计算行列式等;而后将矩阵理论与向量理论相结合,使学生更加深刻地理解矩阵理论的许多问题(标准型、特征值、特征向量、相似等)。本书按照高等院校理工科各专业线性代数教学要求而编写,全书共7章,包括矩阵、
本书由汤家凤老师精心比对考研大纲,把握近几年考研数学命题方向编著而成,本书题目答案十分详细,解题步骤体现了对于考研数学题目一步步思考的过程,与其他图书相比,本书更加强调解题方法,知识点的讲解更详细,同时强调题目的同类性,让学生对一类问题能够举一反三,达到理解一个解题方法胜做10题的效果。
本练习题集是根据高等数学课程教学基本要求,并按照课程的教学过程以章节顺序编排的,其参编人员都是从事该课程教学多年的教师,在编排方面,根据该课程各章、节教学内容的先后次序以及基本概念、基本方法、重点、难点,精选了各类练习题型,题型包含填空题、判断题、选择题、计算题、应用题、证明题等,每章还附有自测题,旨在检验学生对基本概