本教材主要介绍拓扑学的入门知识,主要内容分为两部分,一是点集拓扑学,一是代数拓扑。前者主要介绍点集拓扑学的基本概念和方法,包括点集拓扑公理、核心概念、延拓定理、商空间等。后者只讲授代数拓扑学中同伦论的基本理论,包括同伦定义、基本群及其应用等。本教材有以下几个特点:第一:本教材以度量空间引入,比较直观,学生容易建立起相关
本书是山东大学数学学院新形态系列教材《高等数学(下册)(慕课版)》配套的练习册。本书采用“一书一练”的结构,与配套教材完全对应,涵盖配套教材5章的练习题,内容包括无穷级数、向量代数与空间解析几何、多元函数微分学及其应用、重积分及其应用、曲线积分与曲面积分。本书内容由易到难、由浅入深,有助于知识点的理解、巩固和掌握,可以
本书主要介绍非连续Sturm-Liouville算子以及边界条件依赖谱参数的三阶常微分算子谱的定性和定量分析方法。通过引入新的Hilbert空间,在新的空间中定义新的内积,将非经典的常微分算子转化为对称微分算子,利用无界线性算子及函数论的方法和技巧,获得了算子的同构性、可解性、强制性,特征值的依赖性以及特征函数系的完备
本书是2012年10月出版的武汉大学数学与统计学院湛少锋、桂晓风、王孝礼、黄正华编著《高等数学学习指南》的修订本。本次修订在保持第一版优点和特色基础上,对书中典型例题作了增减,特别是对考研真题作了大量的更新。使其更便于教师课堂教学和学生自主学习。本书在保持原有框架和内容、风格不变的前提下,对部分章节的习题解答进行了调整
本书是为管理类联考编写的数学辅导用书,由多年奋斗在教学一线的名师编写而成。本书内容依据最新考试大纲,对近七年真题进行了剖析,每道题都给出了详细的解题思路,对考点和难度进行了点评,对于多数题目都给出了常规解法和技巧解法,拓展考生思维。本书的特色还在于每题都给出了变式训练,在重视基本概念、基本理论的同时着重对数学思想、数学
本书由上海交通大学物理教研室教师根据多年教学经验和实践编写而成。本书内容简练,重点突出,基础扎实。全书分为上、下两册。上册内容包括力学、机械振动、机械波和热物理学;下册内容包括电磁学、波动光学和量子物理学。本书为非物理专业的大学物理教程,可作为高等院校工科各专业的大学物理教科书,也可作为综合性大学和师范院校非物理专业的
这是韩国数学教育专业教授崔永基所著的讲解数学之美的通俗读物。 本书将数学和哲学合二为一,用通俗易懂的语言阐述了数学究竟美在何处。行文中,作者还穿插介绍了历史上诸多数学家的生平故事,可以让各位非专业的读者在趣味中感受数学之美。 作者希望我们能够打破对数学的偏见,数学并不是单纯的反复计算,也不是只有复杂无趣的数学公式,所以
本书共有六章,系统介绍群、环、域这三个重要代数结构的基础知识,既有丰富的例子也有深入的理论。内容包括群论基础、群的作用与Sylow定理、群的结构、环论基础、几类典型的交换环、域论。每章留有20道习题,方便读者巩固所学知识。本书还介绍了一些重要数学家的生平事迹,也提到一些有趣的未解决的猜测供读者探索。 由编者负责的近世代
本书首次将亚原子物理学的神秘主义阐释带入公众视野,并通过古代神秘主义传统和20世纪物理学发现之间的平行比较,很大程度上挑战了过去物理学研究中的的保守思想,并为探讨量子力学同佛教、印度教和道教思想之间关联性的研究奠定了基础。本书于1975年首次出版,凭借其广阔的视野、生动的论述与鲜明的主张已然成为国际畅销书。时至今日,本