本教程是根据上海交通大学为贯彻教育部“基础学科拔尖学生培养计划”以及探索公共基础课程分级教学模式改革中对数学课程体系和教学内容提出的要求编写而成的。教程分为上、中、下三册,分别为一元微积分学、多元微积分学和高等微积分学。本书为上册,介绍一元微积分学,总课时为96课时,内容包括实数与数列极限理论、函数极限与连续、一元微分
本书介绍复变函数与积分变换的基本概念、理论和方法。全书共分9章,主要内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,解析函数在平面场的应用,傅里叶变换,拉普拉斯变换等。本书中每章的后面给出本章小结及若干思考题,便于读者复习和总结;同时每章还配备了一定数量的习题并在书后给出
本书主要介绍了Zakharov-Kuznetsov(ZK)方程的物理和力学背景,在物理上和数学理论上开展的一系列理论研究,以及取得的一系列的重要成果,其中包括ZK方程的物理推导、二维ZK方程在Hs中局部适定性最佳结果、利用Martel-Merle方法证明在高维能量空间的渐近稳定性、ZK方程孤立子不稳定性的解的爆破性研究
本书从电磁物理理论出发,重点阐述了在量子效应、尺寸效应和介质运动效应作用下的麦克斯韦方程最新拓展与应用,以及这些效应在纳米尺度电子和光学器件中的影响。这是迄今为止系统地介绍在此环境下麦克斯韦方程理论、实验和应用研究的最新拓展的首部专著。首先,讨论了麦克斯韦方程组与量子场论结合及其量子化,为量子电磁场技术前沿应用奠定了理
教材分为《新编微积分(理工类)》上、下两册: 上册主要致力于解决微积分入门难的问题,以完成与中学数学学习的平稳衔接,并在此基础上展开对一元函数微分和积分的概念、计算以及应用等微积分中最基础的内容研究.上册内容包括函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,微分方程与数学建模初步这六
不变子空间和约化子空间问题是泛函分析中的一个基本问题。算子的交换子和相似度可以帮助理解算子的结构。Toplitz算子是算子理论中一类重要的算子。算子的相似性是泛函分析中与不变子空间和约化子空间问题相关的一个有趣的话题。该书总结了Bergman空间、Dirichlet空间等解析函数空间中的相似和约化子空间问题。研究方法包
本研究旨在开发新型高效且稳定的数值算法,以求解特定类型的偏微分方程,突破现有数值方法的局限性,提升数值解的精度、计算效率与稳定性。理论上,为偏微分数值分析理论体系增添新的算法与理论成果,深化对数值方法收敛性、稳定性等特性的理解;实践中,为材料科学等领域的实际工程问题提供更精准、高效的数值模拟解决方案,助力相关领域技术革
本套书包含《双曲问题:理论、数值数据及应用——投稿演讲》《双曲问题:理论、数值数据及应用——全体会议与特邀演讲》两个分册。
本书共分为五章,第一章简单介绍了有关线性关系的一些基本知识,第二章讨论线性关系的闭性和其伴随的稳定性,第三章讨论Banach空间中闭线性关系的谱集在若干扰动下的稳定性,特别地,证明了线性关系谱的上半连续性并给出其谱的误差估计,第四章讨论Hilbert空间中自伴线性关系的本质谱的在相对有界扰动下的稳定性,第五章研究Hil
本书介绍了复变函数的基本概念、基本理论和方法,包括复数与复变函数、解析函数、复变函数的积分、复变函数项级数、留数理论及其应用、共形映射和MATLAB在复变函数中的应用等。本书以学生的学习为中心,力求深入浅出、通俗易懂,激发学生的学习兴趣,同时每章配有小结和习题并本书末给出了部分习题的答案与提示。