本书共分为绪论、基本知识与基本操作与实验选编三部分。本书在内容安排上,力求做到循序渐进,以利于对学生分阶段分层次地进行培养和训练,即实验内容由简单到综合;实验步骤交代由注入式到启发式;基本操作训练由易到难;逐步加入设计性实验,在培养学生动手能力的同时,增强学生的创新意识,以适应科学发展对学生创新思维能力培养的要求。
《蒙古族数理文化史研究》为国家社科基金冷门“绝学”项目“蒙古族珠日海文献收集整理与研究(19VJX141)”之阶段性成果之一。内容包括蒙古族数理文化的数学文化和天文历法文化、蒙古族数理文化教育发展及其各阶段的特征、蒙古族数理文化史代表性人物的成就及其对中华民族优秀传统数理文化形成过程的重要作用等。书稿学术质量较高,研究
本书是按新时期大学数学教学大纲编写,内容丰富、理论严谨、思路清晰、例题典型、方法性强,注重分析解题思路与规律,对培养和提高学生的学习兴趣以及分析问题和解决问题的能力将起到较大的作用.全书共分9章,内容涵盖了函数与极限、导数与微分、微分中值定理与导数应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数和微分
本书系统地介绍了三类重要偏微分方程的推导过程、理论基础及其数值求解方法,旨在为读者提供一本从理论推导到实际应用无缝衔接的教材。作为描述物理现象、工程问题中空间和时间变化规律的数学模型,偏微分方程在自然科学和工程技术中都具有重要的核心地位和广泛的应用价值。本书介绍了偏微分方程的基本概念,通过生动的物理和工程实例展示了如何
本书是上册,内容包括力学和电磁学。内容涵盖了大学物理学最基本、最重要的知识点,在保留经典物理基本框架的同时,对近代物理(相对论和量子物理)和新技术的基本物理原理进行了加强和拓展。全书各章均有内容提要及丰富的例题和习题,并附有习题答案。
本书主要包括一元函数的极限与连续、导数与微分、微分学的应用、不定积分、定积分及其应用、常微分方程、空间解析几何初步、多元函数微分学、无穷级数、Python在高等数学中的应用,还附有可单独分拆的习题集,书末附参考答案。
本书涵盖全国各高校的考试内容,包括线性规划与单纯形法、对偶理论和灵敏度分析、运输问题、目标规划、整数规划、非线性规划、动态规划、图与网络优化、网络计划与图解评审法、排队论、存储论、对策论、单目标决策等。
本书依照国家教育部制定的高等院校线性代数教学基本要求而编写,体现了当前普通高等院校培养高素质应用型人才数学课程设置的发展趋势与教学理念。本书内容包括行列式与克莱姆法则、矩阵、矩阵的秩与向量空间、线性方程组等内容。每章有实际应用问题、课程思政阅读材料、本章要求及一定数量的习题。
本书内容包括微积分的创立、一元函数的极限与连续、微积分的核心思想、导数的应用、积分的几何应用、积分的其他应用、一阶微分方程的应用、高阶微分方程的应用、附录。
本书分为力学基础篇、电磁学篇、波动光学篇、气体动理论和热力学篇、近代物理篇,共16章。在保持《大学物理学》(第7版)教材风格和特色的前提下,对教材部分章节的前后位置进行了调整,使之更加符合教学规律,结构更加简单。适当减少了数学运算繁琐、难度较大的例题,选用紧扣教学内容的典型题。