《变分方法与非线性发展方程》讨论变分方法在非线性发展方程理论中的应用.非线性发展方程主要关心局部解、全局解的存在性以及孤立被解的稳定性等问题.利用变分方法我们可以寻找众多的非线性发展方程的稳态解,之后根据对应的守恒律可以得到系统的轨道稳定性和不稳定性。《变分方法与非线性发展方程》主要内容包括*优控制问题中的扩散方程、量
本书是高等代数课程和解析几何课程的习题训练辅导书。本书包括两个部分:代数部分和几何部分。代数部分包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等内容。几何部分包括几何空间的线性结构和度量结构、空间的平面和直线、常见曲面、坐标变换、平面二次曲线方程的化简及其类型和性质等内容。本书习题难度分
矩阵半张量积是近二十年发展起来的一种新的矩阵理论。经典矩阵理论的最大弱点是其维数局限,这极大限制了矩阵方法的应用。矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为跨越维数的矩阵理论。矩阵半张量积讲义的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍,计划出五卷。卷一:矩阵半张量的基本
本书以环、半群、范畴等代数结构中的Moore-Penrose逆、群逆、Drazin逆、核逆、伪核逆为主线,介绍了这几类广义逆的代数特性(包括代数方程刻画、存在性准则、表达式等等),揭示了代数结构的性质和广义逆的性质之间的内在联系。从矩阵分解入手,介绍矩阵广义逆的基本性质,以此类比,延伸到环、半群中的元素以及范畴中的态射
本书是根据高等学校非数学类专业“线性代数”课程的教学要求和教学大纲,将新工科理念与国际化深度融合,结合山东大学数学团队多年的教学经验,并借鉴国内外优秀教材的特点编写完成.全书共6章,主要内容包括行列式、矩阵、向量与向量空间、线性方程组、矩阵的特征值与特征向量、二次型.每章最后有对应知识的MATLAB实例和核心知识点的思
本书是作者在多年教学实践和研究的基础上,吸取若干国内外教材的优点,创新教材内容体系和数学方法编写而成的,理论体系的处理更加科学、简洁,易教易学。全书主要内容包括代数理论的预备知识、矩阵及其初等变换、行列式、n维向量空间、多项式、线性空间、线性变换、Jordan标准形与λ-矩阵、欧氏空间、二次型与双线性函数等。配有概念解
本书主要面向大学数学、计算机科学与技术专业信息安全方向的高年级本科生、研究生,以及对纠错编码感兴趣的教师和科研人员。全书分为10章。第1章是绪论,介绍了纠错码的研究意义与进展,以及量子纠错码的研究意义与进展。第2和3章分别介绍了有限环上的自对偶循环码和拟循环码的一些结论。第4章介绍了指数为1的循环码的代数结构和极小生成
高等代数是数学专业考研的必考课程,本书是作者在积累了多年为数学专业本科生进行高等代数考研辅导的经验的基础上编写而成的.全书共9章,包括行列式、线性方程组、矩阵、多项式、二次型、线性空间、线性变换、λ-矩阵、欧氏空间等内容.书中对很多高校近年的高等代数考研高频真题进行了分类解析,力求使读者能够举一反三,熟悉考试中经常出现
本教材是普通高等教育农业农村部“十四五”规划教材《线性代数》的配套用书,按主教材章节顺序编写,各章内容分为:教学目标与基本要求、基本内容与重要结论、典型方法与范例精讲、自测题、自测题解答、教材习题全解共六部分。本书从线性代数的教学目标、基本要求、基本内容、重要结论、典型方法和范例精讲等方面对各章内容做了具体分析指导。每
本书共分3章:行列式、初等变换、特征值与特征向量。主要内容包括:行列式入门;利用行列式的性质求行列式;计算特殊行列式;初等变换入门;矩阵的秩;可逆矩阵;线性方程组;特征值与特征向量入门等。