本书共包含了27章,具体内容包括:二项安德罗斯-戈登-布雷苏(Andrews-Gordon-Bressoud)恒等式、哈恩差分算子的施图姆-刘维尔理论、汉克尔行列式问题的可解性、卷积与特殊仿射变换的乘积定理、正交多项式的渐进与潘勒韦(Painlevé)超越函数、从高斯圆问题到多元香农(Shannon)抽样、加权分拆恒等
本书主要包含两部分:复变函数和数学物理方法。第一部分复变函数主要介绍了复数、复变函数、解析函数的积分、级数、留数等内容;第二部分数学物理方法主要介绍了数学物理方程的导出、行波法与分离变量法、傅里叶变换、贝塞尔方程与勒香特方程、格林函数及其应用等内容。本书稿除介绍传统的复变函数和数学物理方程内容外,还介绍了物理上有用的一
本书共11章,包括随机事件与概率、随机变量及其分布、二维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验、方差分析、回归分析与正交试验。每章有精心选配的习题用以巩固知识,书末附有部分习题参考答案。
本书所著内容是作者近年对模糊数学进行研究所得到的一些成果,研究内容主要分两部分:第一部分是在基于结构元理论的基础上,系统地研究了模糊复分析,主要工作是利用结构元理论对模糊复分析中的复Fuzzy数、复Fuzzy值函数的极限与连续、复Fuzzy值函数的微分进行详细的研究,从而简化模糊复分析的计算,为模糊复分析理论与应用研究
本书主要是对具有小时滞微分方程奇异摄动理论及其在兰彻斯特战斗方程和传染病模型方面应用所进行的一些研究。全书共分六章。第1-2章是关于时滞方程的奇异摄动研究,第3章是关于非线性时滞传染病模型的建立及研究,第4-6章是关于时滞兰彻斯特方程奇异摄动研究及其在硫磺岛战役、海湾战争和伊拉克战争中的应用研究。
本书内容源于两位作者多年教授多变量微积分课程的心得,具有两大优势:既强调了该主题的概念和计算内容,又拥有现代观点。前面的章节对经典主题进行了成熟的介绍,包括多变量中的微积分、高级微积分和向量分析,这些主题通常在本科数学课程的三年级或四年级进行讲授;然后转向常微分方程以及二阶经典偏微分方程,这些内容通常可以在高级微积分或
本书内容包括:函数、极限、导数、微分、中值定理、不定积分、定积分、常微分方程、矢量代数与空间解析几何、多元微积分、曲线与曲面积分、无穷级数。
本书共分6章。第1章介绍Fourier变换及其逆变换的基本概念,并讨论它们的若干重要性质;第2章讨论Fourier变换的应用,重点介绍了线性的微分方程、积分方程和偏微分方程的Fourier变换求解;第3章介绍Laplace变换及其逆变换的基本概念,以及它们的若干重要性质,并讨论Laplace逆变换的计算方法;第4章研究
本书是反映20世纪初数学家所发现的一种新的看待传统素材的工具巴拿赫空间与希尔伯特空间的算子理论的英文版专著,中文书名可译为《算子理论问题集》。 本书作者的名字有点长,叫作穆罕默德.希赫姆.莫尔塔德,他是阿尔及利亚数学家,任阿尔及利亚奥兰大学教授。
本书作者在求职的过程中研究了1000道以上的费米问题,总结出费米推定的体系。他们将所有费米问题分为6+1种模型,将基础解答方法整理成5个步骤,并详细解析15个核心问题,帮助读者牢牢掌握费米问题的解题方法和流程。只要掌握这种方法,就能够在资料不充足的情况下,运用已有知识和正确的假设来迅速做出准确判断,让费米推定成为你受用