"本书是与同济大学数学科学学院编写的《微积分》(第四版)配套的学习辅导书,按教材的章节顺序编排,与教学需求同步。本书以每章的节(或联系紧密的几节)为单元,编写了内容提要、教学要求和学习注意点、释疑解难、例题剖析与增补、习题解析等栏目,针对学生学习中的问题和需要进行了答疑辅导;全书对教材中大约三分之一的习题和大部分数学实
\"本教材根据数学分析课程教学中出现的一些新的需求而编写。全书共十二章,主要内容包含实数、序列极限、函数极限与连续、导数与微分、不定积分、微分中值定理和Taylor展开式、微分问题、积分、函数列与函数项级数、反常积分与含参变量积分、曲线积分与曲面积分、Fourier级数等。教材较详细地介绍了实数理论,以一元和多元统一的
"在本书中,著名数学家、Steele奖得主志村五郎以清晰易读的风格,介绍了一个全新的数学领域。书中主题包括Witt定理和二次型上的Hasse原理、Clifford代数的代数理论、自旋群和自旋表示。作者还给出了一些在其他地方不容易找到的基本结果。本书的两个重要主题是:(1)二次Diophantus方程,(2)正交群和Cl
"本书共分五章。第一章介绍有理数域的p进赋值,给出衡量有理数大小和距离的各种不同尺度。第二章讲述p进数域,这是有理数域对p进赋值的完备化域。介绍了在p进数域中解代数方程和多项式分解的“新奇”结果和p进分析的基本工具:亨泽尔引理和牛顿折线。第三章介绍用p进分析工具研究数论问题的一个精彩例子,即研究多元二次方程的有理数解的
"本书简明介绍了20世纪数学的六个精选领域,这些领域提供的许多现代数学工具被应用于计算机科学、工程和其他领域的当代研究。这六个领域包括测度论、高维几何、傅里叶分析、群的表示、多元多项式和拓扑。对每个领域,作者都介绍了基本概念、示例和重要结果。本书清晰易懂,强调直观理解,并包括精心挑选的练习。在理论计算机科学和离散数学中
"扩展图是理论计算机科学、几何群论、概率论和数论中的重要工具。而用于严格建立图的扩展性质的技术来自表示论、代数几何和算术组合学等数学的不同领域。围绕后一主题,本书着重讨论了Lie型有限群上的Cayley图的重要情形,发展了诸如Kazhdan性质(T)、拟随机性、乘积估计、从子簇中逃逸以及Balog-Szemerédi-
"本书是编者在多年的实际教学经验的基础上,根据最新的线性代数课程教学基本要求编写而成。本书结构严谨,内容丰富,阐述深入浅出,层次清晰,有大量的实例应用。全书共分为六章,内容包括:矩阵、线性方程组、线性空间与线性变换、行列式、特征值与特征向量、二次型与正定矩阵。在上一版的基础上,本次修订调整了部分章节内容,并新增了100
"本书是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的教学辅导书,由同济大学作者团队根据教材内容和要求编写而成。本书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)等
"本书是威廉·洛厄尔·普特南数学竞赛的重要参考资料,其特色是将问题置于重要的数学主题的背景下。作者强调了竞赛中的问题与其他问题、课程和更高级主题的联系。最好的问题包含与当前重要研究相关的复杂思想的核心,但这些问题对本科生来说是可以理解的。问题的解答是根据美国数学月刊、数学杂志和参赛者的答案汇编而成的。多种解法可以增强读
\"本书是克莱因的名著,其内容是作者在临终前一两年给部分同事所作的讲演,而由他的学生们编辑成书。书中介绍了数学科学在19世纪的发展。在本卷中,作者非常详尽而且有批判性地分析了高斯、黎曼、魏尔斯特拉斯、柯西、伽罗瓦等一大批最重要的数学家的数学思想和贡献;也介绍了一大批物理学(特别是数学物理)大师如开尔文、麦克斯韦、亥姆霍