"纽结理论,作为纽结的数学的生动阐述,将吸引各种各样的读者,从寻求传统研究范围之外的经验的本科生,到想要这一学科的从容介绍的数学家。开始进一步研究计划的研究生将发现一个有价值的概述,读者不需要线性代数以外的训练就能理解书中展现的数学知识。当来自线性代数和基本群论的工具被引入来研究纽结的性质时,拓扑和代数之间的相互作用,
"卷绕数是拓扑学中最基本的不变量之一。它测量一个动点P绕一个不动点Q运动的次数,前提是P的运动路径不经过Q并且P的最终位置和它的起始位置相同。这个简单的想法有着深远的应用。通过本书的学习,读者将了解以下内容:卷绕数如何帮助我们证明每个多项式方程都有一个根(代数基本定理),保证通过单个平面切割对空间中三个对象进行公平划分
\"本书聚焦于环拓扑这一全新数学领域,它作为等变拓扑、代数几何与辛几何、组合学和交换代数的边缘交叉学科于20世纪90年代末兴起,随后迅速发展成为一个非常活跃的领域,与其他数学领域有着许多密切联系,并持续吸引着来自不同领域的专家。环拓扑中的关键角色是矩-角(moment-angle)流形,它是一类以组合术语定义、具有环面
"这本精心编写的教材介绍了微分几何的美妙思想和结果。前半部分涵盖了曲线和曲面的几何,它们为一般理论提供了很多动力和直觉。第二部分研究一般流形的几何,特别强调联络和曲率。书中附有许多图表和示例。阅读本书之前需要先学习本科的数学分析和线性代数。新版做了很多修订,包括更多的图表和习题,并新增了很多精选习题的解答。这个新版本是
"几何群论是指利用来自拓扑、几何、动力学和分析的工具研究离散群。这一领域发展非常迅速,本书对在这一发展中发挥了关键作用的各种主题进行了介绍和概述。本书包含了帕克城数学研究所关于几何群论课程的讲义。该研究所开设了由该领域的专家提供的一系列密集的短期课程,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课
"Poincaré奖得主BarrySimon的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第3部分讨论了点态极
本书收集了2019年至2021年在中国科学院数学与系统科学研究院晨兴数学中心和调和分析及其应用研究中心举办的“偏微分方程的分析方法”讨论班的部分邀请报告。本书共有7篇讲义,包括HajerBahouri教授等关于泡和波阵面分解方法,Rapha?lDanchin教授关于具有间断密度的非齐次不可压缩Navier-Stokes
"Poincaré奖得主BarrySimon的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第2B部分全面介绍了
"Poincaré奖得主BarrySimon的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第1部分致力于实分析
"微分几何中的一个基本问题是在流形上寻找正则度量。最著名的例子是Riemann面的经典单值化定理。Calabi引入极值度量是为了在K?hler几何的框架中找到这一结果的高维推广。本书介绍了对极值K?hler度量的研究,特别是关于射影流形上极值度量的存在与代数几何意义下的基本流形的稳定性猜想。本书阐述了猜想在分析和代数两