作为数学工作室由于数学与物理的这种紧密关系,所以引进了这套英文版物理丛书。《相对论量子场论:第3卷量子场论的应用(英文)》的中文书名可译为《相对论量子场论·第3卷,量子场论的应用》。《相对论量子场论:第3卷量子场论的应用(英文)》的作者为迈克尔·斯特里克兰(MichaelStrickland
《几何基础》是数学大师希尔伯特的一部名著,首次发表于1899年,该书第一次给出了完备的欧几里得几何公理系统。全体公理按性质分为五组(即关联公理、次序公理、合同公理、平行公理和连续公理),他对它们之间的逻辑关系作了深刻的考察,精确地提出了公理系统的相容性、独立性与完备性要求。为解决独立性问题,他的典型方法是构作一个模型,
异向多尺度系统及剪切波自推出以来,其理论得到迅速发展,并获得了广泛认可。它提供了一种实现连续和数字化条件下真正的统一处理方法,并在多个工程领域得到应用。本书由该领域的两位先驱者撰写,是世界上第一部关于剪切波和几何多尺度分析的著作。全书深入阐述了剪切波的理论和应用,可供应用数学、计算机科学、电子信息科学、电气及自动化、通
量子物理一个不可回避的问题是现有的不同理论体系存在不协调的地方。本书对其中若干问题作了初步的剖析与讨论,包括费米系统和量子化方案这样一些基础性问题,并提出新的观点和由此产生的结论。本书中的观点和见解是粗浅的、不成熟的,有待更深入的思考,但我们的思考说明这些问题是确实存在的。由于这些问题不言而喻的重要性,我们期盼本书的出
本书主要介绍了线性二阶锥互补问题的矩阵分裂法和随机线性二阶锥互补问题的求解方法。对于线性二阶锥互补问题,提出了一种正则化并行矩阵分裂法,正则化参数是单调递减趋于零的,在合适的条件下,新算法具有收敛性,而且算法可以并行实现,特别是子问题能够精确求解。对于随机线性二阶锥互补问题,利用不同的二阶锥互补函数和期望残差极小化模型
本书为日本东京大学数学教学成果的总结性作品,由时任东京大学理学院院长弥永昌吉教授策划,教学经验丰富的斋藤正彦教授执笔创作,是日本久负盛名的线性代数图书。本书内容结合了东京大学教养学部的线性代数课程实践,以及东京大学数学系诸多教授的探讨与思索。本书内容循序渐进,结构严谨,从直观描述开始,逐步引入形式描述,注重从几何角度引
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家AlexanderGrothendieck(19282014)在J.Dieudonné的协助下于20世纪5060年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时
本书作者是1962年诺贝尔物理学奖获得者列夫·朗道。本书是用朗道十卷的思维方式审视并处理基础物理的内容!使读者可以从自己相对熟悉的内容上体会朗道的思维方式并习惯其行文风格,从而对于那些立志攻克他的《理论物理学教程》的读者大有助益!全书具有朗道的一贯风格行文简洁、思想深刻、物理清晰、逻辑缜密。冯端院士曾评价
本书是与同济大学数学科学学院编写的《高等数学》(第八版)相配套的学习辅导书,由同济大学数学科学学院的教师编写。本书内容由三部分组成,第一部分是按《高等数学》(第八版)下册的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学统一考试数学试题选解,所
本书是在第一版的基础上,依据高等学校大学数学课程教学指导委员会制定的《大学数学课程教学基本要求》,结合应用型高校人才的培养目标和学习特点,并深度融合新工科理念修订而成的。 全书主要内容包括行列式,矩阵及其运算,向量组的线性相关性与矩阵的秩,线性方程组,特征值与特征向量,矩阵的对角化,二次型,线性空间与线性变换,每章后附