本书遵循为专业课打好基础,培养学生的数学素质,提高其应用数学知识解决实际问题的能力的原则,力求做到:分析客观事物——建立概念——发展理论——应用理论解决实际问题,强调将基础知识的学习,数学思想、方法的学习,能力的培养孕育其中;强调理论的应用性及与计算机的结合。本书具有体系严谨、逻辑性强、内容组织由浅入深、讲授方式灵活等特点。本书主要内容包括复数与复变函数、导数、积分、级数、留数、保形映照,傅里叶变换、拉普拉斯变换等,适合工科各专业本科学生使用。
一篇 复变函数
1章 复数与复变函数
1.1 复数
1.1.1 复数及其代数运算
1.1.2 复数的几何表示
1.1.3 复数四则运算的几何意义
1.1.4 扩充复平面
1. 2 复数的乘幂与方根
1.2.1 复数的乘幂
1.2.2 复数的方根
1.3 平面点集
1.3.1 区域
1.3.2 曲线
1.3.3 单连通域和多连通域
1.4 复变函数
1.4.1 复变函数的概念
1.4.2 复变函数的几何解释——映照
1.4.3 反函数与复合函数
1.5 初等函数
1.5.1 指数函数
1.5.2 对数函数
1.5.3 幂函数
1.5.4 三角函数与反三角函数
1.5.5 双曲函数与反双曲函数
1章习题
2章 导数
2.1 复变函数的极限
2.1.1 复变函数极限的概念
2.1.2 复变函数极限的定理
2.2 复变函数的连续性
2.2.1 复变函数连续的概念
2.2.2 复变函数连续的定理
2.3 导数
2.3.1 导数的概念
2.3.2 导数的运算法则
2.3.3 函数可导的必要与充分条件
2.3.4 高阶导数
2.4 解析函数
2.4.1 解析函数的概念
2.4.2 初等函数的解析性
2.4.3 函数解析的必要与充分条件
2.5 调和函数
2.5.1 调和函数的概念
2.5.2 已知实部或虚部的解析函数的表达式
2章习题
3章 积分
3.1 积分的概念、性质、计算
3.1.1 原函数与不定积分
3.1.2 积分及其性质
3.1.3 积分f(z)dz值的计算
3.2 柯西定理及其推广
3.3 柯西积分公式
3.4 解析函数的导数
3章习题
......
4章 级数
5章 留数
6章 保形映照
7章 解析函数对平面向量场的应用
二篇 积分变换
1章 傅里叶变换
2章 拉普拉斯变换
数学实验
附录A 区域变换表
附录B 傅里叶变换简表
附录C 拉普拉斯变换简表
主要参考资料