《测度论(第1卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。第一卷包括了通常测度论教材中的内容:测度的构造与延拓,Lebesgue积分的定义及基本性质,Jordan分解,Radon-Nikodym定理,Fourier变换,卷积,L空间,测度空间,Newton-Leibniz公式,极大函数,Henstock-Kurzweil积分等每章最后都附有非常丰富的补充与习题,其中包含许多有用的知识,例如:Whitney分解,Lebesgue-Stieltjes积分,Hausdorff度,Brunn-Minkowski不等式,Hellinger积分与Hellinger距离,BMO类,Calderon-Zygmund分解等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。
为了更好地借鉴国外数学教育与研究的成功经验,促进我国数学教育与研究事业的发展,提高高等学校数学教育教学质量,本着“为我国热爱数学的青年创造一个较好的学习数学的环境”这一宗旨,天元基金赞助出版“天元基金影印数学丛书”。
该丛书主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。为了提高我国数学研究生教学的水平,暂把选书的目标确定在研究生教材上。当然,有的书也可作为高年级本科生教材或参考书,有的书则介于研究生教材与专著之间。
欢迎各方专家、读者对本丛书的选题、印刷、销售等工作提出批评和建议。
Preface
Chapter 1.Constructions and extensions of measures
1.1.Measurement of length: introductory remarks
1.2.Algebras and c-algebras
1.3.Additivity and countable additivity of measures
1.4.Compact classes and countable additivity
1.5.Outer measure and the Lebesgue extension of measures
1.6.Infinite and a-finite measures
1.7. Lebesgue measure
1.8.Lebesgue-Stieltjes measures
1.9.Monotone and a-additive classes of sets
1.10.Souslin sets and the A-operation
1.11.Carath~odory outer measures
1.12. Supplements and exercises
Set operations (48).
Compact classes (50).
Metric Boolean algebra (53).
Measurable envelope, measurable kernel and inner measure (56).
Extensions of measures (58).
Some interesting sets (61).
Additive, but not countably additive measures (67).
Abstract inner measures (70).
Measures on lattices of sets (75).
Set-theoretic problems in measure theory (77).
Invariant extensions of Lebesgue measure (80).
Whitneys decomposition (82).
Exercises (83).
Chapter 2.The Lebesgue integral
2.1.Measurable functions
2.2.Convergence in measure and almost everywhere
2.3. The integral for simple functions
2.4.The general definition of the Lebesgue integral
2.5.Basic properties of the integral
2.6.Integration with respect to infinite measures
2.7.The completeness of the space L1
2.8.Convergence theorems
2.9.Criteria of integrability
2.10.Connections with the Riemann integral
2.11.The HSlder and Minkowski inequalities
2.12.Supplements and exercises
The a-Mgebra generated by a class of functions (143).
The functional monotone class theorem (146).
Balre classes of functions (148).
Mean value theorems (150).
The LebesgueStieltjes integral (152).
Integral inequalities (153).
Exercises (156).
Chapter 3. Operations on measures and functions
3.1.Decomposition of signed measures
3.2.The Radon-Nikodym theorem
3.3.Products of measure spaces
3.4.F~abinis theorem
3.5.Infinite products of measures
3.6. Images of measures under mappings
3.7.Change of variables in
3.8.The Fourier transform
3.9.Convolution
3.10. Supplements and exercises
On Fubinis theorem and products of a-algebras (209).
Steiners symmetrization (212).
Hausdorff measures (215).
Decompositions of
set functions (218).
Properties of positive definite functions (220).
The Brunn-Minkowski inequality and its generalizations (222).
Mixed volumes (226).
The Radon transform (227).
Exercises (228).
Chapter 4.The spaces Lp and spaces of measures
4.1.The spaces Lp
4.2.Approximations in Lp
4.3.The Hilbert space L2
4.4.Duality of the spaces Lp
4.5.Uniform integrability
4.6.Convergence of measures
4.7.Supplements and exercises
The spaces Lp and the space of measures as structures (277).
The weak
topology in LP(280).
Uniform convexity of LP(283).
Uniform integrability
and weak compactness in L1 (285).
The topology of setwise convergence of measures (291).
Norm compactness and approximations in Lp (294).
Certain conditions of convergence in LP (298).
Hellingers integral and
Hellingers distance (299).
Additive set functions (302).
Exercises (303).
Chapter 5. Connections between the integral and derivative.
5.1.Differentiability of functions on the real line
5.2.Functions of bounded variation
5.3.Absolutely continuous functions
5.4.The Newton-Leibniz formula
5.5.Covering theorems
5.6.The maximal function
5.7.The Henstock-Kurzweil integral
5.8.Supplements and exercises
Covering theorems (361).
Density points and Lebesgue points (366).
Differentiation of measures on ]Rn (367).
The approximate
continuity (369).
Derivates and the approximate differentiability (370).
The class BMO (373).
Weighted inequalities (374). Measures with
the doubling property (375).
Sobolev derivatives (376).
The area and coarea formulas and change of variables (379).
Surface measures (383).
The CalderSn-Zygmund decomposition (385).
Exercises (386).
Bibliographical and Historical Comments
References
Author Index
Subject Index