关于我们
![]() ![]() |
煤岩破坏电磁辐射效应及其应用 读者对象:本书适用于从事煤岩动力灾害现象、电磁天线测试及分析、岩土工程等领域研究的科技工作者
本书是在大量实验室实验和现场实验的基础上,结合信号处理、损伤力学、物理化学和电磁动力学等多学科的理论研究,比较系统地论述了煤岩破坏电磁辐射的基本规律,揭示了煤岩等多孔介质破坏过程与电磁辐射信息之间的关系,建立了三维煤岩力电耦合的损伤力学模型,对其中的参数进行了计算,利用该模型和实验结果建立了煤岩动力灾害预警准则,并提出了对煤岩体应力的测试方法;对煤岩体电磁辐射场进行了模拟和验证。对电磁辐射天线进行了模拟分析和选型,对电磁辐射天线进行了测试分析。同时开发了矿用高速电磁辐射信号测试及分析系统,对煤矿井下工作面煤岩体和干扰和噪声电磁辐射信号进行了测试,分析了其频谱特征;对煤岩样及煤矿掘进巷道的力电耦合场进行了模拟;在煤矿井下对电磁辐射测试煤岩体应力状态和预测煤岩动力灾害进行了试验研究,验证实验和理论分析结果。
更多科学出版社服务,请扫码获取。 ![]()
第1章绪论1
1.1矿山煤岩动力灾害研究进展1 1.1.1煤与瓦斯突出现象1 1.1.2煤与瓦斯突出机理研究现状2 1.1.3冲击矿压机理研究进展8 1.2煤岩电磁效应研究现状11 1.2.1电磁辐射在地震预报方面研究现状11 1.2.2煤岩电磁辐射机理研究现状13 1.2.3煤岩电磁辐射特征研究现状14 1.2.4电磁辐射预测预报煤岩灾害动力现象研究现状15 1.2.5目前电磁辐射需要研究的课题17 1.3本书主要研究内容18 第2章受载煤岩电磁辐射的试验研究19 2.1试验系统、试验方案及试验样品19 2.1.1试验样品及其制备方法19 2.1.2试验系统21 2.1.3试验研究内容23 2.2单轴压缩电磁辐射特征24 2.2.1单轴压缩煤岩混凝土电磁辐射的试验结果24 2.2.2煤样受载后快速卸载过程的电磁辐射时序试验结果32 2.2.3煤岩样冲击过程的电磁辐射特征33 2.2.4煤岩摩擦过程的电磁辐射特征35 2.3组合煤岩破坏过程的电磁辐射特征38 2.3.1组合煤岩样单轴压缩下应力分析38 2.3.2组合煤岩的单轴强度条件分析40 2.3.3受载组合煤岩的电磁辐射试验结果41 2.4煤岩电磁辐射幅值规律45 2.4.1单轴压缩煤岩混凝土电磁辐射的幅值变化特征45 2.4.2单轴压缩组合煤岩电磁辐射的幅值变化特征48 2.4.3冲击过程电磁辐射的强度变化特征50 2.4.4摩擦过程电磁辐射的强度变化特征53 2.5煤岩流变破坏电磁辐射记忆效应规律54 2.5.1循环加载应力的确定54 2.5.2煤岩破坏电磁辐射记忆效应试验结果55 2.5.3瓦斯、水对煤岩破坏电磁辐射记忆效应的影响61 2.6小结63 第3章含瓦斯煤岩受载破坏电磁辐射试验研究65 3.1试验系统及方案65 3.1.1试验系统65 3.1.2试验方案70 3.2试样制备及试验准备71 3.3煤岩力学特性及电磁辐射特征72 3.3.1煤岩单轴压缩破坏力学特性及电磁辐射特征72 3.3.2含瓦斯煤岩单轴压缩破坏的变形特征79 3.3.3孔隙瓦斯对煤岩峰值强度的影响81 3.3.4孔隙气体对煤岩弹性模量的影响83 3.3.5含瓦斯煤岩受载破坏过程中的电磁辐射特征84 3.4小结88 第4章煤岩电磁辐射信号频谱特征研究90 4.1组合煤岩电磁辐射试验研究90 4.1.1组合煤岩样的制作91 4.1.2单一煤体单轴压缩电磁辐射信号特征91 4.1.3组合煤岩电磁辐射信号特征93 4.2煤岩变形破坏电磁辐射信号频谱分析95 4.2.1煤体单轴压缩电磁辐射信号频谱分析95 4.2.2组合煤岩变形破坏电磁辐射信号频谱分析101 4.2.3傅里叶谱与功率谱的对比分析112 4.3基于小波变换的电磁辐射信号特征分析112 4.3.1基于小波的电磁辐射信号特征分析的基本方法112 4.3.2煤体单轴压缩电磁辐射信号小波特征频谱分析113 4.3.3组合煤岩电磁辐射信号小波特征频谱分析122 4.3.4频谱分析与小波分析的结果比较137 4.4基于希尔伯特黄变换(HHT)电磁辐射频谱分析137 4.4.1HHT分析法137 4.4.2电磁辐射信号的HHT分析142 4.5小结158 第5章煤岩电磁辐射信号噪声频谱特征及抑制研究159 5.1煤岩电磁辐射信号的传播途径159 5.2煤岩电磁辐射信号采集过程噪声分析160 5.2.1电磁辐射信号实验室采集过程中噪声来源160 5.2.2电磁辐射信号现场采集过程中噪声来源161 5.3煤岩电磁辐射监测抗干扰技术161 5.3.1屏蔽技术161 5.3.2滤波技术162 5.4电磁辐射信号的小波降噪方法163 5.4.1小波变换降噪模型和降噪过程163 5.4.2小波变换降噪阈值选取与确定165 5.5基于小波理论的电磁辐射信号降噪167 5.5.1单一煤样电磁辐射信号的小波去噪167 5.5.2组合煤岩电磁辐射信号的小波去噪171 5.6工作面电磁辐射信号的噪声抑制技术177 5.6.1不同噪声源的电磁辐射信号频谱特征177 5.6.2工作面电磁辐射信号去噪185 5.7小结190 第6章煤岩变形破坏电磁辐射的非线性预测方法192 6.1煤岩破裂过程声发射和电磁辐射信号的混沌特征192 6.1.1关联维数及其计算192 6.1.2声发射和电磁辐射信号的混沌特征194 6.2煤岩变形破坏电磁辐射的神经网络预测方法研究195 6.3自适应BP神经网络的基本原理及实现步骤196 6.4煤岩变形破裂电磁辐射自适应神经网络预测原理198 6.4.1电磁辐射参数时间序列维数的选定198 6.4.2自适应神经网络预测原理198 6.5自适应神经网络在煤岩电磁辐射信号预测中的应用199 6.6小结201 第7章煤岩电磁辐射接收天线特征参数及模拟研究202 7.1引言202 7.1.1天线定义202 7.1.2天线基本参数204 7.1.3天线极化波209 7.2煤岩电磁辐射接收天线特征参数及测量方法210 7.2.1电磁辐射接收天线设计原则211 7.2.2电磁辐射接收天线基本特性213 7.2.3电磁辐射接收天线参数测量216 7.3煤岩电磁辐射接收天线模拟技术220 7.3.1HFSS软件及其相关技术定义220 7.3.2煤岩电磁辐射场仿真研究222 7.3.3电磁辐射接收天线仿真研究227 7.4小结237 第8章煤岩力电耦合模型及动力灾害预警准则239 8.1引言239 8.1.1损伤力学及其发展239 8.1.2煤岩强度的统计损伤理论241 8.1.3煤岩材料的损伤力学模型241 8.1.4基于Weibull分布的煤岩强度统计损伤模型242 8.1.5基于正态分布的煤岩强度统计损伤模型244 8.1.6三维煤岩力学损伤本构关系245 8.2煤岩力电耦合的损伤力学模型247 8.2.1基于电磁辐射脉冲数的一维煤岩力电耦合模型248 8.2.2基于电磁辐射脉冲数的三维煤岩力电耦合模型249 8.2.3基于电磁辐射强度的煤岩力电耦合模型252 8.3力电耦合模型相关参数计算253 8.3.1力电耦合模型的相关参数意义253 8.3.2力电耦合模型参数的计算方法253 8.3.3计算结果253 8.4煤岩力电耦合模型的应用255 8.4.1煤岩均匀性对电磁辐射的影响255 8.4.2不同围压对煤岩电磁辐射的影响256 8.4.3单轴压缩煤岩样突然卸载时的电磁辐射特征257 8.4.4循环加载过程的电磁辐射特征258 8.5矿山煤岩电磁辐射预警准则259 8.5.1电磁辐射监测预警指标259 8.5.2煤岩动力灾害电磁辐射预警准则259 8.5.3预警临界值及动态趋势系数的确定261 8.5.4煤岩动力灾害电磁辐射预警技术262 8.6小结263 第9章电磁辐射监测煤岩体应力状态技术及应用264 9.1电磁辐射评价煤岩体应力状态技术原理264 9.2煤岩体前方应力区域电磁辐射评价技术268 9.2.1掘进工作面应力状态电磁辐射测试269 9.2.2回采工作面前方应力状态电磁辐射测试271 9.3采掘应力场电磁辐射监测评价技术274 9.3.1掘进巷两帮应力状态电磁辐射监测技术274 9.3.2回风巷煤壁应力状态电磁辐射监测技术277 9.4回采工作面周期来压电磁辐射监测技术278 9.4.1回采工作面前方非接触式电磁辐射测试结果278 9.4.2回采工作面非接触式电磁辐射测试结果281 9.4.3回采工作面顶板周期来压钻孔电磁辐射测试结果282 9.5小结285 第10章煤岩电磁辐射监测技术的应用研究286 10.1电磁辐射监测技术286 10.2电磁辐射测试装备287 10.2.1 KBD5便携式电磁辐射监测仪的组成及功能287 10.2.2 KBD7煤岩动力灾害非接触电磁辐射监测仪292 10.3电磁辐射监测技术在煤与瓦斯突出预测中的应用297 10.3.1 3248运输联巷基本情况297 10.3.2 KBD7电磁辐射监测仪测试与分析298 10.3.3电磁辐射的影响因素分析307 10.3.4电磁辐射规律分析与实施步骤317 10.4电磁辐射监测技术在冲击矿压预测中的应用317 10.4.1冲击矿压发生前后的电磁辐射变化规律319 10.4.2电磁辐射与微震震级间的关系319 10.5煤岩电磁辐射监测技术发展趋势320 10.5.1“智慧线”通信技术320 10.5.2“智慧线”技术在煤岩电磁辐射监测中的应用322 10.6小结324 参考文献325 Contents Preface Chapter 1Introduction1 1.1Advances in coal or rock dynamic disasters research1 1.1.1The phenomenon of coal and gas outburst1 1.1.2The review of mechanism of coal and gas outburst 2 1.1.3The review of mechanism of rock burst8 1.2The situation of the electromagnetic emission of coal or rock11 1.2.1The review of electromagnetic emission (EME) in earthquake prediction11 1.2.2The review of EME mechanism of coal or rock13 1.2.3The review of EME characteristics of coal or rock14 1.2.4The review of EME in prediction of coal or rock dynamic disasters15 1.2.5The research topic of EME17 1.3The research contents18 Chapter 2EME experimental study of coal or rock under load19 2.1Experimental system and test plan19 2.1.1Test samples and their preparation method19 2.1.2Experimental system21 2.1.3Experimental research contents23 2.2Characteristics of EME under uniaxial compression24 2.2.1EME experimental results of coal, rock and concrete under uniaxial compressive24 2.2.2EME experimental results of coal during quick uploading32 2.2.3EME characteristics of coal or rock in the impact process33 2.2.4EME characteristics of coal or rock in the friction process35 2.3EME characteristics of coalrock combination fracture38 2.3.1Stress analysis of coalrock combination under uniaxial compression38 2.3.2Strength analysis of coalrock combination under uniaxial compression40 2.3.3EME experimental results of coalrock combination under load41 2.4EME amplitude law of coal or rock45 2.4.1EME amplitude variation of coal, rock and concrete under uniaxial compressive45 2.4.2EME amplitude variation of coalrock combination under uniaxial compressive48 2.4.3EME intensity variation in the impact process50 2.4.4EME intensity variation in the friction process53 2.5EME memory effect law of coal or rock rheological fracture54 2.5.1Cyclic loading stress54 2.5.2EME memory effect experimental results of coal or rock fracture55 2.5.3Influence of gas and water on EME memory effect of coal or rock fracture61 2.6Summary63 Chapter 3EME experimental study of coal or rock containing gas fracture65 3.1Experimental systems and test plan65 3.1.1Experimental system65 3.1.2Experimental plan70 3.2Preparation of samples and experimental71 3.3Mechanical properties and EME characteristics of coal or rock72 3.3.1Mechanical properties and EME characteristics of coal or rock under uniaxial compression72 3.3.2Deformation characteristics of coal containing gas under uniaxial compressive79 3.3.3Influence of pore gas on the peak intensity of coal or rock 81 3.3.4Influence of pore gas on the elastic modulus of coal or rock 83 3.3.5EME characteristics of coal or rock containing gas fracture84 3.4Summary88 Chapter 4EME spectral characteristics of coal or rock90 4.1EME experimental study of coalrock combination90 4.1.1Preparation of coalrock combination samples90 4.1.2EME characteristics of coal under uniaxial compression91 4.1.3EME characteristics of coalrock combination fracture93 4.2EME spectrum analysis of coal or rock fracture95 4.2.1EME spectrum analysis of coal under uniaxial compression95 4.2.2EME spectrum analysis of coalrock combination fracture101 4.2.3Comparison between the Fourier spectrum and power spectrum112 4.3Analysis of EME based on wavelet transform 112 4.3.1Basic analysis method of EME based on wavelet transform112 4.3.2EME wavelet spectrum analysis of coal under uniaxial compression113 4.3.3EME wavelet spectrum analysis of coalrock combination fracture122 4.3.4Comparison between the spectral analysis and wavelet analysis137 4.4EME spectrum analysis based on HilbertHuang Transform (HHT)137 4.4.1HHT Method137 4.4.2HHT analysis of EME142 4.5Summary158 Chapter 5Noise spectral characteristics in EME of coal or rock and its suppression159 5.1EME pathways of coal or rock159 5.2Noise analysis in EME of coal or rock during signal acquisition process 160 5.2.1Noise sources in EME during signal acquisition process at the laboratory160 5.2.2Noise sources in EME during signal acquisition process on site161 5.3Jamming technology of EME monitoring of coal or rock161 5.3.1Shielding technology161 5.3.2Filtering Technology162 5.4Denoising method of EME using wavelet transform163 5.4.1Denoising mode and process using wavelet transform163 5.4.2Threshold of denoising using wavelet transform165 5.5Denoising of EME based on wavelet theory167 5.5.1EME denoising of coal using wavelet transform167 5.5.2EME denoising of coalrock combination using wavelet transform171 5.6Denoising technology of EME in coal face177 5.6.1EME spectral characteristics of different noise sources177 5.6.2Denoising of EME in coal face185 5.7Summary190 Chapter 6EME nonlinear prediction method of coal or rock fracture192 6.1Chaos characteristics of acoustic emission and EME of coal or rock fracture192 6.1.1Correlation dimension and its calculation192 6.1.2Chaos characteristics of acoustic emission and EME194 6.2EME neural network prediction method of coal or rock fracture195 6.3The basic principle and implementation steps of adaptive BP neural network196 6.4Principles of adaptive neural network prediction for EME of coal or rock fracture198 6.4.1Time series dimension of EME parameters198 6.4.2Principles of adaptive neural network prediction198 6.5Applications of adaptive neural network prediction in EME of coal or rock199 6.6Summary201 Chapter 7Characteristic parameters and simulation study of EME receiving antenna of coal or rock202 7.1Introduction202 7.1.1Antenna definition202 7.1.2The basic parameters of antenna204 7.1.3Antenna polarized wave209 7.2Characteristic parameters and measurement of EME receiving antenna of coal or rock210 7.2.1Design principles of EME receiving antenna211 7.2.2Basic characteristics of EME receiving antenna213 7.2.3Parameter measurement of EME receiving antenna216 7.3Simulation technology of EME receiving antenna of coal or rock220 7.3.1HFSS software and its technical definition220 7.3.2EME filed simulation study of coal or rock222 7.3.3Simulation study of EME receiving antenna227 7.4Summary237 Chapter 8Electromechanical coupling model for EME of coal or rock and guidelines of disaster warning239 8.1Introduction239 8.1.1Damage mechanics and its development239 8.1.2Statistical damage theory of coal or rock strength241 8.1.3Damage mechanics model of coal or rock materials241 8.1.4Statistical damage model of coal or rock strength based on the Weibull distribution242 8.1.5Statistical damage theory of coal or rock strength based on normal distribution244 8.1.6Damage Mechanical model of three dimensional coal or rock245 8.2Damage mechanics model of coal or rock based on electromechanical coupling model247 8.2.1D electromechanical coupling model of coal or rock based on the pulses of EME248 8.2.2D electromechanical coupling model of coal or rock based on the pulses of EME249 8.2.3Electromechanical coupling model of coal or rock based on the intensity of EME252 8.3Parameters calculation of electromechanical coupling model 253 8.3.1Parameters significance of electromechanical coupling model253 8.3.2Parameters calculation253 8.3.3Calculation results253 8.4Application of electromechanical coupling model of coal or rock255 8.4.1Influence of the uniformity of coal or rock on the EME255 8.4.2Influence of different confining pressure on the EME of coal or rock256 8.4.3Characteristics of EME when uniaxial compression sudden unloading of coal or rock257 8.4.4Characteristics of EME during cyclic loading258 8.5EME warning criteria of coal or rock259 8.5.1Early warning indicators of EME monitoring259 8.5.2EME warning criteria of coal or rock dynamic disasters259 8.5.3Warning thresholds and dynamic trends coefficients259 8.5.4EME warning technology of coal or rock dynamic disasters 262 8.6Summary263 Chapter 9EME monitoring technology of coal or rock stress and applications264 9.1Technical principles of coal or rock stress evaluation by EME264 9.2EME monitoring technology of stress region in front of coal or rock268 9.2.1EME monitoring of stress state on the excavation face269 9.2.2EME monitoring of stress state in front of working face271 9.3EME monitoring technology of mining stress field274 9.3.1EME monitoring technology of stress state in cutting roadway274 9.3.2EME monitoring technology of stress state in return airway277 9.4EME monitoring technology of cycle pressure in working face278 9.4.1Noncontact monitoring results of EME in front of working face278 9.4.2Noncontact monitoring results of EME in working face281 9.4.3EME monitoring study of periodic roof pressure in working face282 9.5Summary285 Chapter 10Field applications of EME monitoring technology of coal or rock286 10.1EME monitoring technology286 10.2EME monitoring equipment287 10.2.1KBD5 portable EME monitor287 10.2.2KBD7 noncontact EME monitor292 10.3EME monitoring technology in coal and gas outburst prediction297 10.3.1Basic situation of transportation lane297 10.3.2EME test and analysis using KBD7 monitor298 10.3.3Factors analysis of EME307 10.3.4Law analysis and implementation steps of EME313 10.4EME monitoring technology in rock burst prediction317 10.4.1Variation of EME before and after rock burst occurred 317 10.4.2Relationship between EME and magnitude of microseismic319 10.5Trends of EME monitoring technology320 10.5.1“The Smartcable” communication technology320 10.5.2EME monitoring technology based on “The Smartcable”322 10.6Summary324 References325
你还可能感兴趣
我要评论
|