《抽象代数的问题和反例》汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 《抽象代数的问题和反例》通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
更多科学出版社服务,请扫码获取。
《抽象代数的问题和反例》可供高年级本科生学习抽象代数和教师教学时参考. 《抽象代数的问题和反例》比较系统和完整, 也可以看作是一本用来阅读的习题解答.
第1章群论
群只有一种代数运算,因此比较容易深入讨论.群的左右单位元和逆元的相关问题应该仔细讨论,元素的阶对揭示群的结构起着重要的作用,通过群的阶可以给出群的一些重要性质,但一般来说,两个不同元素的阶无法决定它们的乘积的阶,元素的阶是研究群的一个重要工具.子群继承了群的一些重要性质,通过子群可以了解群的很多性质,但群与子群的关系是复杂而密切的.正规子群是一个重要的概念,具有很好的性质.对称群是一类性质比较清楚的群,它给群提供了很多重要而简明的反例.群的同态和同构让不同的群可以比较,使得群的分类简单明了。
1.1群的定义
1.1.1二元运算
问题1.1.1二元运算是什么?
从SxS到S的一个映射,称为S上的一个二元运算
问题1.1.2SxS上的映射,都是S上的一个二元运算吗?
不一定。设S一{(a1,n2,a3)a1,n2,a。都是实数)是3维欧氏空间,则内积不再是向量,因此内积不是二元运算。
1.1.2群的定义
问题1.1.3什么是群?
设G是一个非空集合,若在G上定义一个二元运算,满足
(1)结合律:对任何n扣,c∈G,有,则称G是一个半群(sem1group),记作(G)若(G)还满足。
(2)存在单位元,使对任何有