|
关于我们
新书资讯 新书推荐 |
超导中的纳米科学和工程(英文影印版)
作为节能技术,更高性能的超导材料成为必要。这些材料可以从纳米单元中发展起来。《超导中的纳米科学和工程(英文影印版)》讲述了如何用纳米技术和纳米尺度的磁模板来修正超导物质。内容包括基本纳米效应、涡旋、涡旋-反涡旋模型、涡旋动力学、约瑟夫森现象和临界电流等。本书适合本领域的研究者和研究生阅读。
超导与纳米工程都是当前物理学和材料、工程等方面的研究热点,二者的结合自然更加受人关注。本书作为这一方面的专著,罗列并讲解了众多技术。对于这方面的研究者帮助会很大。
莫斯查可夫(V.Moshchalkov),比利时鲁汶大学教授。
1 Guided Vortex Motion and Vortex Ratchets
in Nanostructured Superconductors Alejandro V. Silhanek, Joris Van de Vondel, and Victor V. Moshchalkov 1.1 Introduction. 1.2 Equation of Motion 1.3 Guided Vortex Motion 1.3.1 Transverse Electric Field and Guided Vortex Motion.. 1.3.2 Experimental Results and Theoretical Investigations. 1.4 Ratchets 1.4.1 Basic Ingredients 1.4.2 Experimental Considerations 1.4.3 Experimental Results and Theoretical Investigations. 1.5 Conclusion References 1 Guided Vortex Motion and Vortex Ratchets in Nanostructured Superconductors Alejandro V. Silhanek, Joris Van de Vondel, and Victor V. Moshchalkov 1.1 Introduction. 1.2 Equation of Motion 1.3 Guided Vortex Motion 1.3.1 Transverse Electric Field and Guided Vortex Motion.. 1.3.2 Experimental Results and Theoretical Investigations. 1.4 Ratchets 1.4.1 Basic Ingredients 1.4.2 Experimental Considerations 1.4.3 Experimental Results and Theoretical Investigations. 1.5 Conclusion References 2 High-Tc Films: From Natural Defects to Nanostructure Engineering of VortexMatter Roger W¨ordenweber 2.1 Introduction. 2.2 Vortex Matter in High-Tc Superconductors 2.2.1 Vortex Motion in Ideal Superconductors 2.2.2 Flux Pinning and Summation Theories 2.2.3 Pinning Mechanism in HTS. 2.3 Vortex Manipulation in HTS Films 2.3.1 Vortex Manipulation via Artificial Structures 2.3.2 Theoretical Considerations of Vortex Manipulation via Antidots 2.3.3 Experimental Demonstration.. 2.4 Vortex Matter in Superconducting Devices 2.4.1 Low-Frequency Noise in SQUIDs 2.4.2 Vortex Matter in Microwave Devices 2.5 Conclusions. References 3 Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatterning. Wolfgang Lang and Johannes D. Pedarnig 3.1 Introduction. 3.2 Defect Creation by Ion Irradiation.. 3.2.1 Methods. 3.2.2 Ion Species 3.2.3 Ion Energy Dependence. 3.2.4 Angle Dependence.. 3.2.5 Experimental Results 3.3 Electrical Properties after Ion Irradiation 3.3.1 Brief Review 3.3.2 Experimental Techniques 3.3.3 Resistivity 3.3.4 Hall Effect 3.3.5 Long-term Stability 3.4 Nano-patterning by Masked Ion Beam Irradiation 3.4.1 Previous Attempts to Nanopatterning of HTS 3.4.2 Computer Simulation Results 3.4.3 Experimental Patterning Tests 3.5 Conclusions and Outlook References 4 Frontiers Problems of the Josephson Effect: From Macroscopic Quantum Phenomena Decay to High-TC Superconductivity. Antonio Barone, Floriana Lombardi, and Francesco Tafuri 4.1 Introduction. 4.2 Grain Boundary Junctions: The Tool 4.3 Retracing d-wave Order Parameter Symmetry in Josephson Structures 4.4 Macroscopic Quantum Phenomena in Josephson Systems: Fundamentals and Low Critical Temperature Superconductor Junctions.. 4.4.1 Resistively and Capacitively Shunted Junction Model and the "Washboard" Potential. 4.4.2 Macroscopic Quantum Tunnelling (MQT) and Energy Level Quantization (ELQ) 4.4.3 Developments of Quantum Measurements forMacroscopic Quantum Coherence Experiments 4.5 Macroscopic Quantum Effects in High-TC Josephson Junctions and in UnconventionalConditions 4.5.1 Macroscopic Quantum Phenomena in High-TC Josephson Junctions 4.5.2 Switching Current Statistics in Moderately Damped Josephson Junctions 4.5.3 MQT Current Bias Modulation 4.6 Mesoscsopic Effects and Coherence in HTS Nanostructures.. 4.7 Conclusions. References 5 Intrinsic Josephson Tunneling in High-Temperature Superconductors A. Yurgens and D. Winkler 5.1 Introduction. 5.2 Sample Fabrication. 5.2.1 Simple Mesa 5.2.2 Flip-Chip Zigzag Bridges 5.2.3 Other Methods 5.3 Electrical Characterization. 5.3.1 I-V Curves of Intrinsic Josephson Junctions in Bi2212 5.3.2 Critical Current Density of Individual CuO Plane 5.3.3 Superconducting Critical Current of Individual CuO Planes in Bi2212 5.3.4 Tunneling Spectroscopy. 5.3.5 THz Radiation 5.3.6 Joule Heating in Mesas 5.3.7 The C-Axis Positive and Negative Magneto- Resistance in a Perpendicular Magnetic Field 5.4 Summary. References 6 Stacked Josephson Junctions S. Madsen, N.F. Pedersen, and P.L. Christiansen 6.1 Introduction. 6.2 Model 6.2.1 Numerical Method. 6.2.2 Analytic Solutions. 6.3 Bunching of Fluxons. 6.3.1 Bunching due to Coupling Between Equations 6.3.2 Bunching due to Boundary Conditions 6.3.3 External Microwave Signal 6.3.4 External Cavity 6.4 ExperimentalWork 6.5 Summary. References 7 Point-Contact Spectroscopy of Multigap Superconductors P. Samuely, P. Szab?o, Z. Pribulov?a, and J. Kaˇcmarˇc??k 7.1 Point-Contact Andreev Reflexion Spectroscopy. 7.2 Two Gaps in MgB2 and Doped MgB2 Systems 7.2.1 MgB2 7.2.2 Aluminum and Carbon-DopedMgB2 7.3 Multiband Superconductivity in the 122-type Iron Pnictides 7.4 Conclusions. References 8 Nanoscale Structures and Pseudogap in Under-doped High-Tc Superconductors M. Saarela and F.V. Kusmartsev 8.1 Introduction. 8.2 Microscopic Origin of Two Types of Charge Carriers. 8.3 Pseudogap and Two Types of Charge Carriers 8.4 Nanostructures in STM Measurements.. 8.5 Conclusions. References 9 Scanning Tunneling Spectroscopy of High Tc Cuprates Ivan Maggio-Aprile, Christophe Berthod, Nathan Jenkins, Yanina Fasano, Alexandre Piriou, and ?ystein Fischer 9.1 Introduction. 9.2 Basic Principles of the STM/STS Technique 9.2.1 Operating Principles 9.2.2 Topography 9.2.3 Local Tunneling Spectroscopy. 9.2.4 STS of Superconductors.. 9.3 Spectral Characteristics of HTS Cuprates 9.3.1 General Spectral Features of HTS Cuprates. 9.3.2 Superconducting Gap and Pseudogap 9.4 Revealing Vortices and the Structure of their Cores by STS 9.4.1 Vortex Matter in Conventional Superconductors. 9.4.2 Vortex Matter in HTS. 9.4.3 Electronic Structure of the Cores 9.5 Local Electronic Modulations seen by STM. 9.5.1 Local Modulations of the Superconducting Gap 9.5.2 Local Modulations of the DOS 9.5.3 Summary. References 10 Scanning Tunnelling Spectroscopy of Vortices with Normal and Superconducting tips J.G. Rodrigo, H. Suderow, and S. Vieira 10.1 Introduction. 10.2 Experimental: Low Temperature STM with Superconducting tips 10.2.1 Low Temperature STM. 10.2.2 Tips Preparation and Characterization.. 10.2.3 Spectroscopic Advantages of Superconducting tips 10.3 Vortices Studied by STS 10.3.1 The Vortex Lattice: General Properties and Visualization 10.3.2 NbSe2 Studied with Normal and Superconducting tips. 10.3.3 NbSe2 vs. NbS2 10.3.4 The Vortex Lattice in thin Films: A 2D Vortex Lattice 10.4 Other Scenarios for the Interplay of Magnetism and Superconductivity 10.5 Summary and Prospects. References 11 Surface Superconductivity Controlled by Electric Field Pavel Lipavsk?y, Jan Kol?aˇcek, and Klaus Morawetz 11.1 Introduction.. 11.2 Limit of Large Thomas-Fermi Screening Length 11.3 de Gennes Approach to the Boundary Condition 11.4 Link to the Limit of Large Screening Length 11.5 Electric Field Effect on Surface Superconductivity 11.5.1 Nucleation of Surface Superconductivity 11.5.2 Solution in Dimensionless Notation 11.5.3 Surface Energy.. 11.6 Magneto-capacitance. 11.6.1 Discontinuity in Magneto-capacitance 11.6.2 Estimates of Magnitude 11.7 Summary. References 12 Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids Simon J. Bending, Milorad V. Miloˇsevi?c, and Victor V. Moshchalkov 12.1 Introduction.. 12.2 Theoretical Description of F-S Hybrids 12.2.1 Ginzburg-Landau Theory. 12.2.2 London Theory 12.3 Experimental Results. 12.3.1 Scanning Hall Probe Imaging. 12.3.2 Low Moment Dot Arrays with Perpendicular Magnetisation. 12.3.3 High Moment Dot Arrays with Perpendicular Magnetisation. 12.3.4 High Moment Arrays with In-Plane Magnetisation. 12.4 Conclusions. References 13 Superconductor/Ferromagnet Hybrids: Bilayers and Spin Switching J. Aarts, C. Attanasio, C. Bell, C. Cirillo, M. Flokstra, and J.M.v.d. Knaap 13.1 Introduction.. 13.2 Some History of the Field. 13.3 Sample Preparation and Ferromagnet Characteristics 13.4 Interface Transparency. 13.5 Domain Walls in S/F Bilayers 13.5.1 DomainWalls in Nb/Cu43Ni57 13.5.2 DomainWalls in Nb/Py 13.6 On the Superconducting Spin Switch 13.6.1 Spin Switch Effects with CuNi 13.6.2 Spin Switch Effects with Py 13.7 Concluding Remarks. References 14 Interplay Between Ferromagnetism and Superconductivity Jacob Linder and Asle Sudb? 14.1 Introduction. 14.2 Artifical Synthesis: FjS Hybrid Structures 14.2.1 Basic Physics 14.2.2 Quasiclassical Theory 14.2.3 FjS Bilayers 14.2.4 SjFjS Josephson Junctions 14.2.5 FjSjF Spin-valves. 14.2.6 Future Prospects 14.3 Intrinsic Coexistence: Ferromagnetic Superconductors 14.3.1 Experimental Results 14.3.2 Phenomenological Framework. 14.3.3 Probing the Pairing Symmetry. 14.3.4 Future Prospects References Index
你还可能感兴趣
我要评论
|

新书资讯





