Functions of Complex Variables 复变函数论 第二版
定 价:35 元
- 作者:马立新
- 出版时间:2014/12/1
- ISBN:9787109197268
- 出 版 社:中国农业出版社
- 中图法分类:O174.5
- 页码:224
- 纸张:纯质纸
- 版次:2
- 开本:16开
-
商品库位:
马立新编著的这本《复变函数论(第2版)》共6 章,主要内容包括复数与复变函数、解析函数、 复变函数的积分、级数、留数及其应用和共形映射等 ,较全面、 系统地介绍了复变函数的基础知识。内容处理上重点 突出、叙述 简明,每节末附有适量习题供读者选用,适合高等师 范院校数学 系及普通综合性大学数学系高年级学生使用。
科信源图书专营店是位于全国最大的图书批发市场北京西南物流图书批发中心的线下实体批发店铺,因图书品种繁多,数据庞大,大部分图书内容信息并没有得到完善的编辑,恳请请您谅解,我们现在正以十二分的速度及努力编辑完善着我店每一本图书的内容信息。如果读者对某本信息不完善的图书感兴趣,可以放心大胆购买,我店承诺7天无理由退换货,来回运费我们承担!线下实体批发店铺科信源图书专营店值得您信赖!
科信源图书专营店是位于全国最大的图书批发市场北京西南物流图书批发中心的线下实体批发店铺,因图书品种繁多,数据庞大,大部分图书内容信息并没有得到完善的编辑,恳请请您谅解,我们现在正以十二分的速度及努力编辑完善着我店每一本图书的内容信息。如果读者对某本信息不完善的图书感兴趣,可以放心大胆购买,我店承诺7天无理由退换货,来回运费我们承担!线下实体批发店铺科信源图书专营店值得您信赖!
前言Chapter I Complex Numbers and Functions 1 Complex Numbers 1.1 Complex Number Field 1.2 Complex Plane 1.3 Modulus, Conjugation, Argument, 前言Chapter I Complex Numbers and Functions 1 Complex Numbers 1.1 Complex Number Field 1.2 Complex Plane 1.3 Modulus, Conjugation, Argument, Polar Representation 1.4 Powers and Roots of Complex Numbers Exercises 2 Regions in the Complex Plane 2.1 Some Basic Concept 2.2 Domain and Jordan Curve Exercises 3 Functions of a Complex Variable 3.1 The Concept of Functions of a Complex Variable 3.2 Limits and Continuous Exercises 4 The Extended Complex Plane and the Point at Infinity 4.1 The Spherical Representation, the Extended Complex Plane 4.2 Some Concepts in the Extended Complex Plane ExercisesChapter II Analytic Functions 1 The Concept of the Analytic Function 1.1 The Derivative of the Functions of a Complex Variable 1.2 Analytic Functions Exercises 2 Cauchy-Riemann Equations Exercises 3 Elementary Functions 3.1 The Exponential Function 3.2 Trigonometric Functions 3.3 Hyperbolic Functions Exercises 4 Multi-Valued Functions 4.1 The Logarithmic Function 4.2 Complex Power Functions 4. 3 Inverse Trigonometric and Hyperbolic Functions ExercisesChapter III Complex Integration 1 The Concept of Contour Integrals 1.1 Integral of a Complex Function over a Real Interval 1.2 Contour Integrals Exercises Cauchy-Goursat Theorem 2.1 Cauchy Theorem 2.2 Cauchy Integral Formula 2.3 Derivatives of Analytic Functions 2.4 Liouville's Theorem and the Fundamental Theorem of Algebra Exercises Harmonic Functions ExercisesChapter IV Series 1 Basic Properties of Series 1.1 Convergence of Sequences 1.2 Convergence of Series 1.3 Uniform convergence Exercises 2 Power Series Exercises 3 Taylor Series Exercises 4 Laurent Series Exercises 5 Zeros of an Analytic Functions and Uniquely Determined Analytic Functions 5.1 Zeros of Analytic Functions 5.2 Uniquely Determined Analytic Functions 5.3 Maximum Modulus Principle Exercises 6 The Three Types of Isolated Singular Points at a Finite Point Exercises 7 The Three Types of Isolated Singular Points at a Infinite Point ExercisesChapter V Calculus of Residues 1 Residues 1.1 Residues 1.2 Cauchy's Residue Theorem 1.3 The Calculus of Residue Exercises 2 Applications of Residue 2.1 The Type of Definite Integral □ 2.2 The Type of Improper Integral □ 2.3 The Type of Improper Integral □ Exercises 3 Argument Principle ExercisesChapter VI Conformal Mappings 1 Analytic Transformation 1.1 Preservation of Domains of Analytic Transformation 1.2 Conformality of Analytic Transformation Exercises 2 Rational Functions 2.1 Polynomials 2.2 Rational Functions Exercises 3 Fractional Linear Transformations Exercises 4 Elementary Conformal Mappings Exercises 5 The Riemann Mapping Theorem ExercisesAppendix Appendix 1 Appendix 2AnswersBibliography