关于我们
![]() ![]() |
电子电路基础 为了实现课程知识体系内在的贯通和平滑过渡,电子科技大学将电子信息类专业的主干课模拟电路基础和电路分析整合成电子电路基础课程,本书是该课程英文课堂的配套教材。第一部分主要讲述电路的模型及基本的电路定律,电路分析实际上是对电路的模型进行分析,学习基尔霍夫等基本的电路定律才能对电路模型进行正确的数学求解。叠加定理是线性电路的一个重要定理,也是后续基本放大电路交直流分析的重要理论依据,同时配合戴维南定理和诺顿定理,大大简化电路分析的难度。第二部分进入模拟电路的学习,基本放大电路的时域分析和频域分析是模拟电路基础的核心,也是后续研究生课程模拟集成电路分析与设计的重要铺垫,对于有志于从事集成电路芯片设计的学生而言,基本放大电路这部分知识是重中之重,同时需要配合仿真工具强化理解。第三部分主要讲解应用集成运算放大器的范例,通过集成运算放大器和反馈可以实现对数、指数运算电路和乘法、除法运算电路,低通、高通、带通和带阻滤波电路,学生可以自行选择商用集成运放芯片搭建运算或者滤波电路,以加强实践能力。 (1) 帮助学生掌握电路的基本理论和基本分析方法,为学习后续课程准备必要的电路知识。
电路分析和模拟电路基础两门课程合并之后,电路分析的内容删减了约一半,这是因为随着电子电路技术日新月异的发展,电路的计算机辅助分析已经成为普遍采用的科学研究方法。电子设计自动化及各种电路仿真软件的飞速发展大大简化了过去繁杂的电路分析和计算,因此,应该强化电路计算机辅助分析,使学生初步掌握大规模电路计算机辅助分析的方法和过程,建立科学计算的概念,不宜过细地分析模块的内部原理、进行繁杂的电路计算; 但经典的电路分析理论知识及向模拟电路基础过渡的知识必须精讲,并及时准确地进行归纳总结。 电路分析课程应该定位于为模拟电路基础作铺垫,电路与电路模型及电路分析方法两章的学习使学生能掌握电子线路的基础知识,对电路的复杂工程问题进行抽象和表达,并对所建立的模型完成准确的推导、计算。学习了电路分析中的电路模型和电路分析方法两章后就可以开始学习模拟电路基础中的半导体器件和单管放大电路两章,因为学生一旦建立起电路模型的基本概念并掌握了叠加定理、戴维南定理及诺顿定理,就可以运用这些定理灵活分析三极管和场效应管双口网络交流小信号等效放大电路。例如,单独对放大器进行交流分析时,可以将放大器视为无源双口网络,而考虑信号源之后,放大器作为信号源的负载,应该将放大器和负载合并视为无源单口网络,无源单口网络等效为电阻Ri,即放大器的输入电阻Ri是信号源的负载电阻,而从负载端分析,信号源与放大电路等效为含源单口网络,对于含源单口电路的分析,采用戴维南定理或者诺顿定理画出等效电路,将其等效为开路电压源Uoc与输出电阻Ro的串联或者短路电流源Isc与输出电阻Ro的并联。 在模拟电路基础中讲到场效应管的分析时要用到叠加定理,需要特意强调,只有把晶体管用交流小信号模型做线性化处理之后才能用叠加定理; 否则,非线性电路不能用叠加定理进行求解。含有受控电源的戴维南定理、诺顿定理的计算,学生不知道如何将电路划分成单口网络,讲述例题时应该有多种思路和划分方法,让学生灵活掌握单口的概念,无论对电路怎么划分,都能得出正确答案,使学生掌握不同方法的优点和局限性,有效解决电子系统实现过程中的复杂工程问题。另外,对于含有受控电源的节点分析法,让学生尽量抓住控制量和受控量,主要看受控电源关联几个节点,对于关联一个节点和关联两个节点的方法,上课时都要给出实例,并增加课堂练习。 正弦稳态电路的学习将为放大电路的频率特性作铺垫,这是由于分析放大电路的频率特性(也称频率响应)时,通常对放大电路输入正弦量,研究放大电路的幅频特性和相频特性,而正弦信号是时变信号,其幅度和相位随着时间的变化而改变。对于时变信号的研究通常采用相量法,相量是电子工程学中用来表示正弦量大小和相位的矢量,当频率一定时,相量唯一地表征了正弦量。放大电路频率特性本质上是正弦稳态电路的相量分析,因此,在学习放大电路的频率特性之前,需要先讲述正弦稳态电路,使学生能灵活运用相量法分析放大电路的频率特性,深刻理解放大倍数是信号频率的函数,随着输入信号频率低或高到一定程度,放大倍数都会下降并产生相移。 总之,此教学改革立足于打破原有的分段式教学模式,实现课程知识体系内在的贯通和平滑过渡,推进课程内容有机融合,培养学生的创新思维与工程实践能力、解决复杂问题的决策力,以及自主学习和终身学习的能力。 在开展中文课堂教学改革的同时,电子科技大学格拉斯哥学院等单位也在进行英文课堂授课,本书是英文课堂的配套英文教材,除内容简介、前言、参考文献等附文部分用中文表述外,其余部分都是用英文表述的。如果读者英文阅读或理解有障碍,可对照本书中文版《电子电路基础》(樊华主编,清华大学出版社出版)。 感谢清华大学出版社的编校人员,没有他们的辛勤工作,本书的出版工作难以顺利完成。 由于编者水平有限,书中难免存在不足之处,恳请广大读者批评指正。
樊华,电子科技大学教授,博士生导师。主讲本科生专业基础课电路分析与电子线路模拟电路基础电子电路基础,主讲研究生专业基础课模拟集成电路分析与设计, 近五年总计授课852学时,每年评教结果为五星(优秀),所授课程均为解决我国缺芯之痛打通人才培养最后一公里的集成电路重要理论基础课程。作为项目负责人主持8项教改项目,4项校级教改项目,以第一作者身份在《实验技术与管理》(清华大学主办)等发表教学研究论文21篇(SCI期刊2篇,EI国际会议10篇,核心期刊9篇)。2021年,参赛项目《三轴霍尔传感器芯片设计》在第一届全国博士后创新创业大赛全国总决赛中总分第一,荣获金奖。2022年,参赛项目获得广东省众创杯创业创新大赛之科技海归领航赛特等奖。 Chapter 1Introduction 1.1History 1.2Overview 1.3Simulation Tool Chapter 2Circuit Model 2.1Lumped Circuit 2.2Resistor and Its Circuit Model 2.2.1Resistor 2.2.2Circuit Model of Resistor 2.2.3Potentiometer and Circuit Model 2.2.4Switch and Its Circuit Model 2.2.5Generalization of Resistor Definition 2.3Power Source and Its Circuit Model 2.3.1Power Source 2.3.2Circuit Model of Power Source 2.4Inductor and Its Circuit Model 2.4.1Inductor 2.4.2Circuit Model of an Inductor 2.4.3Generalization of the Definition of Inductor 2.5Capacitor and Its Circuit Model 2.5.1Capacitor 2.5.2Capacitor Circuit Model 2.5.3Generalization of Capacitor Definition 2.6Diode and Its Circuit Model 2.6.1Diode 2.6.2Main Parameters of Diodes 2.6.3The Circuit Model of Diodes 2.6.4Zener Diode 2.6.5The Circuit Model of the Zener Diode 2.7FieldEffect Transistor (FET) and Its Circuit Model 2.7.1FieldEffect Transistor (FET) 2.7.2The Main Parameters of Enhanced FieldEffect 2.7.3FieldEffect Transistor Circuit Model 2.8Bipolar Junction Transistor (BJT) and Its Circuit Model 2.8.1Bipolar Junction Transistor (BJT) 2.8.2Main Parameters of Transistor 2.8.3Circuit Model of Transistor 2.9Kirchhoffs Law 2.9.1Kirchhoffs Current Law 2.9.2Generalization of KCL 2.9.3Kirchhoffs Voltage Law 2.9.4Generalization of KVL 2.10Simulation Experiment 2.10.1Experimental Requirements and Purposes 2.10.2Diode VoltageCurrent Characteristic Circuit Problems Chapter 3Circuit Analysis Methods 3.1Two Types of Constraints and Circuit Equations 3.1.1Two Types of Constraints 3.1.2Circuit Equations 3.2The ThreeElement Method for FirstOrder Circuits 3.2.1FirstOrder RC Circuit 3.2.2Properties of Exponent 3.3Superposition Theorem and Its Application 3.3.1Superposition Theorem 3.3.2Application of Superposition Theorem 3.4Network Equivalence with the Application of Thevenins 3.4.1Network Equivalence 3.4.2Thevenins Theorem and Nortons Theorem 3.4.3Application of Thevenins Theorem and Nortons 3.5Nodal Analysis Method 3.5.1Node Voltage 3.5.2Writing the Node Equation *3.5.3Series RC Circuit with A Step Input *3.5.4Series RC Circuit with Square Wave Input 3.6Phasor Model for Sinusoidal SteadyState Circuits 3.6.1Dynamic Circuits Driven by Sinusoidal Signals 3.6.2Sinusoidal SteadyState Circuits 3.6.3Phasor Representation of Sinusoidal Quantities 3.6.4Phasor Calculation of Sinusoidal Quantities 3.6.5Phasor Model of Sinusoidal SteadyState Circuit 3.7Phasor Analysis of Sinusoidal SteadyState Circuits 3.7.1The Fundamental Method for Phasor Analysis of Sinusoidal 3.7.2Application of Superposition Theorem in Sinusoidal 3.7.3Application of Thevenin/Norton Theorem in Phasor 3.7.4Node Analysis in Sinusoidal SteadyState Circuit Phasor 3.8Frequency Characteristics of Sinusoidal SteadyState 3.8.1Transfer Function and Frequency Characteristics of 3.8.2FirstOrder LowPass Characteristic 3.8.3FirstOrder HighPass Characteristic 3.9Simulation: Thevenin Equivalent Circuits and Norton Equivalent Problems Chapter 4Basic Amplifier Circuits 4.1Performance Indicators of Amplifiers 4.1.1Amplification and Amplifiers 4.1.2Performance Indicators of Amplifier Circuit 4.2Common Source Amplifier Circuit 4.2.1Quiescent Operation Point 4.2.2Basic Performance 4.2.3Frequency Characteristic 4.3Common Drain Amplifier Circuit 4.3.1Quiescent Working Points 4.3.2Basic Performance 4.3.3Frequency characteristics 4.4Transistor Amplifier Circuit 4.4.1Common Emitter Amplifier Circuit 4.4.2Common Collector Amplifier Circuit 4.4.3Common Base Amplifier Circuit 4.4.4Summary of Equivalent Resistance 4.5Emitter Follower Simulation Experiments 4.5.1Experimental Requirements and Objectives 4.5.2Emitter Follower Circuits Problem Chapter 5MultiStage Amplifier Circuits and Operational Amplifiers 5.1Coupling Methods for MultiStage Amplifier Circuits 5.1.1Direct Coupling 5.1.2ResistanceCapacitance (RC) Coupling 5.1.3Transformer Coupling 5.1.4Optoelectronic Coupling 5.2ResistanceCapacitance (RC) Coupling MultiStage Amplifier 5.2.1Quiescent Operating Point 5.2.2Basic Performance 5.2.3Frequency Characteristic 5.3MultiStage Amplifier Circuit Simulation 5.3.1Experimental Requirements and Objectives 5.3.2Experimental Circuits 5.3.3Experimental Procedures 5.3.4Conclusion Problem Chapter 6Operational Amplifiers 6.1Integrated Operational Amplifiers 6.1.1Introduction to Integrated Operational Amplifiers 6.1.2Structural Characteristics of Integrated Operational 6.1.3The Composition of Integrated Operational Amplifier 6.1.4Voltage Transfer Characteristics of Integrated Operational 6.2Mirror Current Source 6.2.1Transistor Mirror Current Source 6.2.2Field Effect Transistor Mirror Current Source 6.2.3MultiCurrent Source Circuit 6.2.4Active Load Common Emitter Amplifier Circuit 6.3Differential Amplifier Circuit 6.3.1LongTailed Differential Amplifier Circuit 6.3.2Current Source Differential Amplifier Circuit 6.3.3Active Load Current Source Differential Amplifier 6.3.4MOSFET Voltage Differential Amplifier Circuit 6.4Complementary Output Circuit 6.4.1Basic Circuit 6.4.2Complementary Output Circuit for Eliminating Crossover 6.4.3MOSFET Class AB Output Stage Circuit 6.5Integrated Operational Amplifier 6.5.1Three Stage CMOS Operational Amplifier 6.5.2Main Performance Indicators of Integrated Operational 6.5.3Lowfrequency Equivalent Circuit of Integrated Operational Problems Chapter 7Negative Feedback Amplifier Circuit 7.1Concept of Negative Feedback Amplifier Circuit 7.1.1Judgment of Feedback 7.1.2The Four Configurations of Negative Feedback Amplifier 7.2Deep Negative Feedback 7.2.1Feedback Network Model and Feedback Factor 7.2.2The Voltage Gain of a Deep Negative Feedback Amplifier 7.3The Impact of Negative Feedback on Other Performance 7.3.1Changing the Input Impedance 7.3.2Changing the Output Impedance 7.3.3Broadening the Bandwidth 7.4Negative Feedback Amplifier Circuit Simulation Experiment 7.4.1Experiment Requirements and Objectives 7.4.2Experimental Principle 7.4.3Experimental Circuit 7.4.4Experimental Procedures 7.4.5Conclusion 7.4.6Discussion of Issues 7.5Summary Problem Chapter 8Operational Circuits and Filtering Circuits 8.1Operational Circuits 8.1.1Circuit Components 8.1.2Addition and Subtraction Operational Circuits 8.1.3Multiplication Operation Circuit 8.1.4Integral Operational Circuit and Differential Operational 8.2Filtering Circuits 8.3Integrated Operational Amplifier Application Simulation 8.3.1Operational Circuit Simulation Experiment 8.3.2Active Filter Circuit Simulation Experiment Problem Chapter 9Waveform Generating Circuit and Signal Conversion Circuit 9.1Sinusoidal Oscillating Circuit 9.1.1RC Sinusoidal Wave Generating Circuit 9.1.2LC Sinusoidal Wave Generating Circuit 9.2NonSinusoidal Wave Generator 9.2.1Comparator Circuit 9.2.2Square Wave Generation Circuit 9.2.3Triangular Wave Generation Circuit 9.2.4Waveform Conversion CircuitTriangular Wave Sine Wave 9.2.5Function Generator 9.3VoltagetoFrequency Conversion Circuit (VoltageControlled 9.3.1Overview 9.3.2Waveform Analysis 9.4Simulation Experiment 9.4.1Experiment Requirements and Objectives 9.4.2Simulation Experiment for Sine Wave Oscillator 9.4.3Square Wave Generation Circuit 9.4.4Triangle Wave Generation Circuit Problem Chapter 10AC/DC Power Sources 10.1Overview 10.1.1Performance Parameters of AC/DC Power Supply 10.1.2Composition of AC/DC Power Supply 10.2Rectifier Circuits and Filter Circuits 10.2.1Rectifier Circuit 10.2.2Filter Circuit 10.3Voltage Regulator Circuit 10.4Series Regulator Circuits and ThreeTerminal Voltage 10.4.1Basic Series Regulator Circuits 10.4.2Series Voltage Regulator Circuit with Amplification 10.4.3Integrated ThreeTerminal Regulators 10.5SinglePhase Rectifier Filter Circuit Simulation Experiment Problem 参考文献
你还可能感兴趣
我要评论
|