Lars Ahlfors 的这本关于拟共形映射的讲义是基于1964 年春季学期在哈佛大学的一门课程形成的, 1966年第一次出版,不久便被公认为注定会成为经典的著作。这些讲义从一开始就讲述了拟共形理论, 给出了一个对Beltrami 方程自足式的处理,并讲述了Teichmüller 空间的基本性质,包括Bers 嵌入和Teichmüller 曲线。引人注目的是,Ahlfors 是如何直接深入事物的核心,以最少的预备知识讲述了重要的结果的。许多研究生和其他一些数学家从这些讲义中已经学到了拟共形映射和Teichow.asp?id=93420
Preface
The Ahlfors Lectures
Acknowledgments
Chapter I. Differentiable Quasiconformal Mappings
A. The Problem and Definition of Grotzsch
B. Solution of Grotzschis Problem
C. Composed Mappings
D. ExtremalLength
E. A Symmetry Principle
F. Dirichletlntegrals
Chapter II. The General Definition
A. The Geometric Approach
B. The Analytic Definition
Chapter III. Extremal Geometric Properties
A. Three Extremal Problems
B. Elliptic and Modular Functions
C. Mori/s Theorem
D. Quadruplets
Chapter IV. Boundary Correspondence
A. The M-condition
B. The Sufficiency of the M-condition
C. Quasi-isometry
D. QuasiconformalReflection
E. The Reverse Inequality
Chapter V. The Mapping Theorem
A. Two Integral Operators
B. Solution of the Mapping Problem
C. Dependence on Parameters
D. The Calderon-Zygmund Inequality
Chapter VI. Teichmuller Spaces
A. Preliminaries
B. Beltrami Differentials
C. A Is Open
D. The Infinitesimal Approach
Editors Notes
The Additional Chapters
A Supplement to Ahlfors's Lectures
CLIFFORD J. EARLE AND IRWIN KRA
Complex Dynamics and Quasiconformal Mappings
MITSUHIRO SHISHIKURA
Hyperbolic Structures on Three-Manifolds that Fiber over the Circle
JOHN H. HUBBARD