关于我们
|
|
点击返回 当前位置:首页 > 中图法 【 TP18 人工智能理论】 分类索引
-
-
深度学习的几何学——信号处理视角
- (韩)芮钟喆/2023-1-1/电子工业出版社
深度学习是人工智能与机器学习领域的重要研究分支,经过短短十几年的发展,已经在计算机视觉与图像处理、自然语言处理等领域取得令人瞩目的成就。本书作为深度学习方面的专门书籍,融合了机器学习、人工神经网络和深度学习的相关概念,并且从信号处理视角呈现了深度学习背后的几何学原理,以便从统一的角度去深化理解深度学习的主要模型和算法,从而更好地用于指导理论分析和实践开发。全书分为三个部分,共14章。第1~4章为第一部分,主要介绍机器学习基础知识,包括向量空间、矩阵代数、凸优化等数学预备知识,以及支持向量机、核回
-
定价:¥79 ISBN:9787121447990
-
-
人工智能数据素养
- 孙越, 龚超, 袁中果等编著/2023-1-1/电子工业出版社
本书以人工智能下的大数据时代为背景,从数据素养、数据分析基础、统计分析、机器学习多个维度全面系统地介绍了如何探索数据、整理数据并分析数据。本书没有给出晦涩难懂的数学公式,也不涉及复杂烦琐的程序代码,而是在阐述基本原理的基础上,辅以简洁的Python程序,让读者能够快速入门,提升个人的数据综合素养。
-
定价:¥89 ISBN:9787121444234
-
-
机器学习与算法应用
- 许桂秋, 汤海林, 武文斌主编/2023-1-1/电子工业出版社
本教材可以作为人工智能学科相关的机器学习技术的入门教材,目的不在于覆盖机器学习技术的所有知识点,而是介绍机器学习的常用算法及其应用,使读者了解机器学习的基本构成及不同场景下使用何种机器学习算法。为了增强实践效果,本教材引入了多个基础技术案例及综合实践案例,以帮助读者了解机器学习涉及的基本知识和技能。
-
定价:¥69.8 ISBN:9787121447099
-
-
深度学习与神经网络
- 赵眸光/2022-11-1/电子工业出版社
神经网络与深度学习是人工智能研究的重要领域,是机器学习的重要组成部分。人工智能是研究理解和模拟人类智能、智能行为及其规律的科学。本书紧紧围绕神经网络和深度学习的基础知识体系进行系统的梳理,力求从基础理论、经典模型和前沿应用展开论述,便于读者能够较为全面地掌握深度学习的相关知识。全书共16章。第1章是绪论,简要介绍人工智能、机器学习、神经网络与深度学习的基本概念及相互关系,并对神经网络的发展历程和产生机理进行阐述;第2章介绍神经网络的基本神经元模型、网络结构、学习方法、学习规则、正则化方法、模型评
-
定价:¥98 ISBN:9787121444296
-
-
深度学习与目标检测(第2版)
- 杜鹏 等/2022-11-1/电子工业出版社
本书的写作初衷是,从学者的角度,用一种通俗易懂的方式,将基于深度学习的目标检测的相关论文中的理论和方法呈现给读者,同时针对作者在深度学习教学过程中遇到的难点,进行深入的分析和讲解。本书侧重对卷积神经网络的介绍,而深度学习的内容不止于此。所以,作者将深度学习分为有监督学习、无监督学习和强化学习三类,将图像分类、目标检测、人脸识别、语音识别、双向生成对抗网络和AlphaGo等应用场景归入不同的类别,并分别对其原理进行了概括性的讲解。本书适合有一定深度学习或目标检测学习基础的学生、研究者、从业者阅读。
-
定价:¥118 ISBN:9787121444425
-
-
PyTorch深度学习简明实战
- 日月光华/2022-10-1/清华大学出版社
本书针对深度学习及开源框架——PyTorch,采用简明的语言进行知识的讲解,注重实战。全书分为4篇,共19章。深度学习基础篇(第1章~第6章)包括PyTorch简介与安装、机器学习基础与线性回归、张量与数据类型、分类问题与多层感知器、多层感知器模型与模型训练、梯度下降法、反向传播算法与内置优化器。计算机视觉篇(第7章~第14章)包括计算机视觉与卷积神经网络、卷积入门实例、图像读取与模型保存、多分类问题与卷积模型的优化、迁移学习与数据增强、经典网络模型与特征提取、图像定位基础、图像语义分割。自然语
-
定价:¥89.8 ISBN:9787302619840
-
-
基于机器学习的工作流活动推荐
- 陈广智 李玲玲/2022-10-1/人民邮电出版社
随着云计算、大数据等的快速发展,越来越多的组织用信息化手段进行流程管理。如何提升流程执行的智能化程度、动态性和柔性,以提高对非标准业务的管理效率,是流程管理面临的一个重要问题。
本书基于流程管理系统积累的日志,提出了3种流程管理的工作流活动推荐方法,分别为基于用户类别近邻的活动推荐方法、基于Pearson相关系数的活动推荐方法和基于协同过滤的活动推荐方法,并介绍了一种流程信息的可视化算法,实现了一个可视化原型系统。
本书结构清晰,文字流畅,图文并茂,适合从事流程管理系统研究的读者阅读,也适合作为
-
定价:¥89.9 ISBN:9787115599186
-
-
分布式人工智能
- 安波 等/2022-10-1/电子工业出版社
全书可分为五大部分,阐述了分布式人工智能的基础知识以及相关进展,包括分布式人工智能简介、分布式规划与优化、多智能体博弈、多智能体学习和分布式人工智能应用。除此之外,由于本领域尚处于蓬勃发展阶段,相关技术与应用层出不穷,因此书中还提供了研究者对于分布式人工智能发展的相关预测,主要集中在:第一,更复杂和更大规模的分布式人工智能问题的研究和解决;第二,分布式人工智能的安全性,鲁棒性和泛化性,这将极大地促进人们对于分布式人工智能问题的理解;第三,分布式人工智能的可解释性,这将使得人类能够理解算法的决策,
-
定价:¥129 ISBN:9787121443046
-
-
TensorFlow.NET 实战
- 仇华/2022-10-1/电子工业出版社
本书基于TensorFlow.NET框架,详细介绍了.NET平台下深度学习的基础原理和应用技术,不仅阐述了算法原理,还演示了实践代码和运行效果,其中完整示例主要采用的语言为C#和F#。全书分为3个部分:第一部分介绍了核心API的用法和基础示例,包括数据类型、张量、EagerMode、自动求导、线性回归、逻辑回归、tf.data、深度神经网络和AutoGraph机制,读者可以通过学习这一部分内容快速入门;第二部分重点演示了.NETKeras的用法,包括模型、网络层、常用API、模型搭建和模型训练,
-
定价:¥129 ISBN:9787121443091
-
-
机器学习与深度学习
- 陶玉婷/2022-9-1/电子工业出版社
本书是“高级人工智能人才培养丛书”中的一本,首先介绍了机器学习的相关概念和发展历史,并在此基础上提出了深度学习——它本质上是近几年来大数据技术催生的产物。本书共12章,其中,第1~7章为机器学习的内容,分别介绍了机器学习的简单模型、贝叶斯学习、决策树、支持向量机、集成学习和聚类;第8~12章为深度学习的内容,由感知机与神经网络开始,之后分别介绍了卷积神经网络、循环神经网络、生成对抗网络及强化学习。第2~12章均提供了相应的实验案例,不仅配有完整翔实的Python语言代码及相关注释,也给出了实验结
-
定价:¥88 ISBN:9787121442766
|