“离散数学”是计算机和信息类专业重要的核心学科基础课程之一。本书内容主要包括集合论(集合、二元关系与函数)、组合计数初步、图论、数理逻辑(命题逻辑、谓词逻辑)、代数系统简介等5部分。在涵盖离散数学各方面内容的同时,本书有层次地精选了丰富的例题和多种解题思路与方法,各章配有适量的习题,帮助读者巩固和掌握所学知识,提高解题
《线性代数(第三版)》是一本颇具特色的线性代数教材,先从向量空间入手,将矩阵作为工具贯穿全书,论及线性代数的基本内容,并简要介绍抽象代数的基本概念,强调基础,侧重计算,由浅入深,便于教学。该书内容包括:预备知识,向量代数,空间中直线与平面,行列式与克拉默法则,矩阵,线性方程组,特征值,二次型,线性空间,线性变换,抽象代
复反射是固定在超平面上每个点的线性变换,它类似于通过万花筒或镜子排列观看图像时所经历的转换。《酉反射群(英文)》使用线性变换的方法对n维复空间中由复反射产生的所有变换组进行了完整的分类,对不可约群进行了详细的研究,对反射群的反射子群进行了完整的分类,充分讨论了反射群元素的本征空间理论。书中附录还概述了表示论、拓扑学和数
本书是一部英文版的数学数学专著,中文书名可译为:《典型群、错排与素数》,本书的两位作者,一位是提摩太.C.布尔尼西,英国布里斯托大学数学系教授,还有一位迈克尔.乔迪奇,西澳大利亚大学数学系教授。本书是为从事代数相关领域研究的学术研究人员和研究生撰写的,其中对有限典型群进行了全面的介绍,包括素数阶原理的共轭性和几何特征。
《线性代数(第三版)》编写按照21世纪新形势下教材改革的精神,总结了多年的教学经验和实践,本着加强基础、强化应用、整体优化的原则,注重理论与应用相结合,力争做到科学性、系统性和可行性相统一,传授数学知识和培养数学素养相统一,先进性和实用性相统一。同时,《线性代数(第三版)》吸取了国内外同类教材的优点,通俗易懂,易教易学
本书没有将离散数学内容按照模块分割进行编写,突出知识的内在联系,循序渐进,相互依存。系统介绍了命题逻辑、谓词逻辑、集合与关系、函数、图论基础、特殊图、代数系统基础、几个典型的代数系统中的有关概念、定理及其证明方法。既强化基本概念的描述,又阐述了离散数学的证明方法及各部分知识的应用实例,展示了离散数学在计算机科学与技术及
在信息过载的时代,面对杂乱的碎片化信息的冲击时,不少人不知道该怎样选择,甚至害怕做出选择。在VUCA(不稳定、不确定、复杂、模糊)时代,大多数人面临不确定性这一新常态,突发事件或者说“黑天鹅”事件不再罕见,导致我们在生活和工作中需要更谨慎地做出合理的决策。“知道做决策的原理”与“知道科学高效地做出正确决策的操作步骤”之
本书介绍了矩阵的基本理论、方法及应用。在选材上力求做到科学、严谨、简洁表述。全书共分八章,系统介绍矩阵的Jordan标准形、线性空间与线性变换、内积空间、矩阵的分解、范数及其应用、矩阵微积分、广义逆矩阵、特征值的估计。内容由浅入深,尽量使读者在较短时间内能够掌握近现代矩阵理论的相关基本内容。学过线性代数课程的读者均具有
矩阵半张量积是近二十年发展起来的一种新的矩阵理论.经典矩阵理论的**弱点是其维数局限,这极大地限制了矩阵方法的应用.矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为穿越维数的矩阵理论.《矩阵半张量积讲义》的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍.计划出五卷,卷一:基本理论与
矩阵理论是数学的一个重要分支,同时在工程学科中有极其重要的应用。《矩阵理论及其应用(第3版)》较为全面、系统地介绍了矩阵理论及其应用。全书共分为六章,内容包括线性空间与线性变换、矩阵特征值与约当标准形、矩阵的范数与幂级数、矩阵函数及其应用、矩阵分解、矩阵特征值的估计与广义逆矩阵等。为了便于读者学习,在各章后面还配有一定