《HNC与语言学研究(第4辑)(2009)》是第四届HNC与语言学研究学术研讨会的论文集,所收录的论文展现了HNC(HierarchicalNetWworkofConcepts,概念层次网络)理论、语言学和语言信息处理界近些年来研究和应用研发的若干新成果。《HNC与语言学研究(第4辑)(2009)》的内容分为6个部分:
导语_点评_推荐词
本书对增强学习与近似动态规划的理论、算法及应用进行了深入研究和论述。主要内容包括:求解Markov链学习预测问题的时域差值学习算法和理论,求解连续空间Markov决策问题的梯度增强学习算法以及进化一梯度混合增强学习算法,基于核的近似动态规划算法,增强学习在移动机器人导航与控制中的应用等。本书是作者在多个国家自然科学基金
本书主要内容包括:遗传算法的基本原理和数学机理、解决连续问题优化的遗传算法和分布式遗传算法、遗传算法的实用技术等。
《神经网络设计方法与实例分析》从神经网络设计和应用实践出发,介绍了10种常见的人工神经网络的基本原理、设计方法,并从各个应用领域精选了丰富的典型应用实例进行剖析,旨在使读者对各类常用的人工神经网络的基本原理和学习算法进一步加深理解,熟悉其主要功能,掌握其设计方法,了解其主要应用,为设计各类神经网络和解决实际问题打下基础
本书对计算智能领域的主要算法进行介绍,重点讨论各种算法的思想来源、流程结构、发展改进、参数设置和相关应用,内容包括绪论以及神经网络、模糊逻辑、遗传算法、蚁群优化算法、粒子群优化算法、免疫算法、分布估计算法、Memetic算法、模拟退火算法和禁忌搜索算法等计算智能领域的典型算法。本书通俗易懂,图文并茂,深入浅出,没有其他
本书的主题是在知识发现(数据挖掘)领域“面临巨大的机遇与挑战”、“基础理论匮乏”的背景下,作为历史与逻辑发展的必然在国内外首次构造并逐步拓展与完善的“基于内在认识机理的知识发现理论”。
阐述计算智能的理论和相关的应用。重点介绍了如下三个方面的内容:计算智能的前沿技术,可以用计算智能的方法来解决的前沿问题,计算智能的最新技术在相关领域的应用。《计算智能及其应用》可作为信息科学技术领域高年级本科生和研究生的针对计算智能的入门教材,也可以供从事科研和技术开发的人员参考。IEEE计算智能协会是该领域重要学术组
以问题求解、知识表示、KB(基于知识的)系统、自动规划、机器学习等关于人工智能的基础级技术为主要内容,但仅依赖这些基础级技术,并不足以支持高性能应用的开发和运行。为此,《人工智能高级技术导论》从推动高性能智能软件的研究和应用角度,对人工智能的高级技术作全面的导论性介绍,包括20世纪80年代开发的KB系统高级技术、非单调
本书分别从网络构造、基本原理、学习规则以及训练过程和应用局限性几个方面,通过多层次、多方面的分析与综合,介绍了人工神经网络中的各种典型网络,以及各种不同神经网络之间在原理和特性等方面的不同点与相同点。