本书首先从人工智能的定义讲起,就人工智能的早期历史、思维和智能的内涵、新千年人工智能的发展进行了简要论述。第二部分详细讲述了人工智能中的知识表示、机器学习、神经网络与深度学习、智能语音技术、计算机视觉、自然语言处理和知识图谱技术等基础知识,并通过人工智能在医疗、交通、生活、金融、零售、安防中的经典的成功应用案例让读者更
本书从工业界一线算法工作者的视角,对深度强化学习落地实践中的工程经验和相关方法论做出了深度思考和系统归纳。本书跳出了原理介绍加应用案例的传统叙述模式,转而在横向上对深度强化学习落地过程中的核心环节进行了完整复盘。主要内容包括需求分析和算法选择的方法,动作空间、状态空间和回报函数设计的理念,训练调试和性能冲刺的技巧等。本
本书采用理论与实战相结合的形式,通过生活中的例子来讲解理论知识,结合实际案例代码,帮助读者在掌握机器学习理论的同时,打下项目实践的基础,同时配有丰富的教学资源,帮助读者自学或开展教学工作。本书共13章,涵盖机器学习入门所需的数学知识及相关算法,包括K近邻算法、决策树、朴素贝叶斯、逻辑回归与梯度下降、支持向量机、AdaB
本书参照《国家新一代人工智能标准体系建设指南》,全面系统地阐述人工智能理论和技术体系的基本框架,并体现了人工智能的**进展。全书共13章,第1章介绍人工智能的基本概念、发展简史,并着重介绍人工智能的主要研究内容与各种应用,以开阔读者的视野,引导读者进入人工智能各个研究领域;第2~6章阐述人工智能的基本原理和技术基础,重
本书以人工智能发展为时代背景,通过20个应用机器学习模型和算法的实际案例,为工程技术人员提供较为详细的实战方案,以便深度学习。在编排方式上,全书侧重对创新项目的过程进行介绍。分别从整体设计、系统流程和实现模块等角度论述数据处理、模型训练和模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习、快速掌握人工智能开
本书深入浅出讲解深度学习,对复杂的深挖其本质,让其简单化;对简单的深挖其联系,让其丰富化。从理论知识到实战项目,内容翔实。本书分为两篇,基础篇主要讲解深度学习的理论,实战篇是代码实践及应用。基础篇(第1~13章)包括由传统机器学习到深度学习的过度、图像分类的数据驱动的方法、Softmax损失函数、优化方法与梯度、卷积神
围绕着MDP模型,阐述动态规划、蒙特卡罗、动态规划等有穷表格式强化学习方法。在深度强化学习框架PyTorch下,阐述DQN,DDDPG,A3C等算法。本书以实例为导向,深度浅出地讲解相关算法。全书采用完整的数学体系,各章内容循序渐进,严谨地讲授强化学习的理论基础,主要定理均给出证明过程。基于理论讲解强化学习算法,
本书从信息科学的角度出发,介绍了智能信息处理的基础理论及各种新的处理技术,涉及目前国内外智能信息处理的研究成果。
本书基于计算机类专业对大数据平台技术和大规模数据处理的实战需求,在阐述数据科学、Hadoop和Spark配置要点和大数据处理周期的基础上,重点阐述大数据采集与存储、预处理、特征工程、数据可视化分析、机器学习基础等大数据处理技术及其Python实现,以及基于Hadoop和Spark平台的Python接口调用和机器学习编程
本书是一本系统介绍机器学习所涉及的数学知识和相关Python编程的实例工具书,同时还介绍了非常经典的综合案例,除了编写机器学习的代码,还编写了深度学习的代码。本书一共分为两部分。 第一部分为数学基础知识部分,包含8个章节,介绍了微积分、线性代数、概率统计、信息论、模糊数学、随机过程、凸优化和图论的系统知识体系及几个数学