本书从数的起源谈起,逐步介绍数的发展和数的各种性质及其应用,其中包括了数学分析、实变函数论和高等代数一些入门知识。
本书主要介绍了拉姆塞的基本理论,拉姆塞数,并论述了组合学家、图论学家、概率学家、计算机专家眼中的拉姆塞定理及拉姆塞数,*后讨论了拉姆塞定理的应用与未来。
Sperner引理
《线性代数(第4版)》是为了适应高等教育中经济管理类专业学生的实际学习需要而编写的经济数学教材之一。 根据高等教育的特点,《线性代数(第4版)》在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗易懂,充分体现该课程的系统性、科学性和实用性的要求。 《线性代数(第4版)》可以作为高等院校经济管理类线性代数课
《近世代数》介绍了几类*基本的代数系统。《近世代数》共五章:第1章介绍基本概念,它是后面各章的基础;第2章介绍群的基本理论,主要包括群的概念与性质、几类简单的群、子群、商群,以及群的同态与同构;第3章介绍环的基本理论,主要包括环的概念与性质、理想与商环,以及环的同态与同构;第4章介绍整环里的因子分解理论;第5章介绍域的
本书是与冯良贵编著的《线性代数与解析几何》(科学出版社,2008)相配套的辅导教材,讲述了各章节的学习目标与要求、内容梗概、疑难解析、典型例题和上机解题.学习目标与要求环节,划分了了解、理解和掌握三个层次的知识点.内容梗概环节,整理了定义、性质、定理和推论.疑难解析环节,分析了知识难点、混淆点和补充点.典型例题环节,用
本书是作者结合长期从事高等代数教学的经验和体会,并注重借鉴和吸收国内外优秀教材的习题优点编写而成的,旨在为读者提供丰富的基础题、概念题,从而加深对基本概念、基本理论的理解,提高逻辑推理能力和解题的技能、技巧。全书由基本概念、多项式、行列式、线性方程组、矩阵、向量空间、线性变换、欧氏空间和酉空间、二次型等9章组成,每章包
本书是作者结合多年初等数论的教学实践,根据高校初等数论课程的教学大纲,并充分考虑专业理论知识与学生未来就业的实际需要相结合的需求编写而成的。其主要内容包括整除理论、不定方程、同余、数的表示、一元同余方程、平方剩余与二次同余方程、原根与指标。书中例题和习题大部分选自中小学各类数学竞赛试题,且每节节后几乎都附有数学家小故事
不书是一本计算数学名著。作者用摄动理论和向后误差分析方法系统地论述代数特征值问题以及有关的线性代数方程组、多项式零点的各种解法,并对方法的性质作了透彻的分析。本书的内容为研究代数特征值及有关问题提供了严密的理论基础和强有力的工具。全书共分九章。第一章叙述矩阵理论,第二、三章介绍摄动理论和向后舍入误差分析方法,第四章分析
本书系统地论述了格代数以及格的子代数性质、构造等理论,介绍了该领域的**研究成果。书中为所述内容提供了全面的论证、详细的运算,也为其在前沿领域中的应用做了准备。全书结构严谨,自成体系。书中第8章给出了作者在格代数领域的一部分成果。